Penerapan Metode Cosine Similarity untuk Meningkatkan Kinerja K-Means pada Pengelompokan Wilayah Penanganan Covid di DKI Jakarta



Nosra, Almanda (2021) Penerapan Metode Cosine Similarity untuk Meningkatkan Kinerja K-Means pada Pengelompokan Wilayah Penanganan Covid di DKI Jakarta. Undergraduate thesis, Universitas Muhammadiyah Jember.

[thumbnail of 1. Pendahuluan.pdf] Text
1. Pendahuluan.pdf

Download (5MB)
[thumbnail of 2. Abstrak.pdf] Text
2. Abstrak.pdf

Download (406kB)
[thumbnail of 3. Bab I.pdf] Text
3. Bab I.pdf

Download (421kB)
[thumbnail of 4. Bab II.pdf] Text
4. Bab II.pdf
Restricted to Repository staff only

Download (649kB) | Request a copy
[thumbnail of 5. Bab III.pdf] Text
5. Bab III.pdf
Restricted to Repository staff only

Download (747kB) | Request a copy
[thumbnail of 6. Bab IV.pdf] Text
6. Bab IV.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy
[thumbnail of 7. Bab V.pdf] Text
7. Bab V.pdf
Restricted to Repository staff only

Download (403kB) | Request a copy
[thumbnail of 8. Daftar Pustaka.pdf] Text
8. Daftar Pustaka.pdf

Download (479kB)
[thumbnail of 9. Lampiran.pdf] Text
9. Lampiran.pdf
Restricted to Repository staff only

Download (715kB) | Request a copy
[thumbnail of 10. Artikel.pdf] Text
10. Artikel.pdf

Download (729kB)

Abstract

Fenomena Covid-19 telah menggemparkan dunia, Indonesia adalah salah satu negara dimana masyarakatnya terdampak dari virus tersebut. Pada penelitian ini dilakukan klasterisasi epidemi virus Covid-19 di DKI Jakarta. kota tersebut di pilih berdasarkan angka kasus tertinggi di Indonesia. Alasan dilakukannya klasterisasi ini berkaitan dengan mengelompokkan kasus persebaran covid di daerah-daerah DKI Jakarta dimana nantinya akan dilakukan untuk menentukan penanganan Covid-19. Menerapkan teknik data mining. Pengelompokan didasarkan pada nomor parameter dirawat, sembuh, meninggal dan isolasi mandiri. Metode K-Means dan metode Cosine Similarity, dan diuji dengan metode DBI (Davies Bouldin Index) dengan menghitung tingkat perhitungan DBI dengan menggunakan metode K-Means tanpa cosine dan tingkat perhitungan DBI dengan menggunakan metode K-Means cosine. Penerapan teknologi data mining. Pengelompokan didasarkan pada nomor parameter. Pengklasteran dilakukan berdasarkan penyebaran kasus terbanyak di provinsi DKI Jakarta. Hasil perhitungannya adalah Tingkat perhitungan nilai DBI yang paling baik dengan menggunakan metode K-means cosine Similarity, karena nilai yang diperoleh rendah, yaitu diperoleh nilai DBI (Davies Bouldin Index) terkecil pada cluster 9 yaitu sebesar -5.527. Sedangkan nilai DBI terbesar pada 2 cluster dengan nilai -2.282.

Contribution
Contributor Name
NIDN/NIDK
UNSPECIFIED
Arifianto, Deni
nidn0718068103
UNSPECIFIED
Rahman, Miftahur
nidn0724039201

Item Type: Thesis (Undergraduate)
Keywords/Kata Kunci: Covid 19 DKI Jakarta, Data Mining, K-means cosine similarity
Subjects: 000 Computer Science, Information, & General Works > 005 Computer Programming, Programs, & Data
Divisions: Faculty of Engineering > Department of Informatics Engineering (S1)
Depositing User: ALMANDA NOSRA | almandanosra12@gmail.com
Date Deposited: 04 Feb 2022 01:46
Last Modified: 04 Feb 2022 01:46
URI: http://repository.unmuhjember.ac.id/id/eprint/12730

Actions (login required)

View Item View Item