PAPER•OPEN ACCESS

The Fifth International Conference on Combinatorics, Graph Theory, and Network Topology 2021

To cite this article: 2022 J. Phys.: Conf. Ser. 2157011001

View the article online for updates and enhancements.

You may also like
The 2nd International Conference of Combinatorics, Graph Theory, and Network Topology

The Erds-Hajnal problem of hypergraph colouring, its generalizations, and related problems
Andrei M Raigorodskii and Dmitrii A Shabanov

Optimal network topologies: expanders cages, Ramanujan graphs, entangled networks and all that Luca Donetti, Franco Neri and Miguel A Muñoz

The Fifth International Conference on Combinatorics, Graph Theory, and Network Topology 2021

Dafik
Editor in Chief of International Conference on Combinatorics, Graph Theory, and Network Topology 2021
E-mail: d.dafik@unej.ac.id

We gratefully acknowledge the presence of all participants on "The Fifth International Conference on Combinatorics, Graph Theory, and Network Topology (ICCGANT)". It is the $5^{\text {th }}$ International conference was held on 21-22 August 2021 by the CGANT Research Group, University of Jember in collaboration with the Indonesian Combinatorics Society (INACOMBS). The conference welcomed participants from several countries, with a wide and variety of mathematics research of interests, in particular combinatorial research. The mission of this conference is to be an annual international forum where members of society organizations, research students, educators and researchers, writers, physicists, teachers and practitioners from all over the world can meet and exchange ideas to communicate and discuss theoretical and practical knowledge of mathematical research and its applications. The aim of the fifth conference is to present and discuss the latest research that leads to the exchange of new theoretical, analytical and scientific knowledge and to a deeper understanding of the fields of mathematics, application of mathematics, and mathematics education. The topics of this conference have been identified on the ic.cgant.unej.ac.id website.

There were 200 participants in ICCGANT 2021, consist of research students, academics and researchers, scholars, scientist, teachers and practitioners from many countries. The number of paper submitted to this conference 138 articles, and the number of paper sent to the reviewers were 95 articles. Throughout the tough refereeing process, we have successfully selected some papers to be published on IOP Conference Series: Journal of Physics of 71 papers.

Finally, on behalf of the organizing committee, we gratefully acknowledge the support from the University of Jember of the year 2021. We would also like to express our sincere gratitude to all the lovely participants who have engaged in this unforgettable and important scientific annual forum.

Prof. Drs. Dafik, M.Sc., Ph.D

THE COMMITTEES

Honorary Advisory Committee:

Dr. Ir. Iwan Taruna, M.Eng.
Prof. Drs. Slamin, M.Comp.Sc., Ph.D

Organizing Committee:
Prof. Drs. Dafik, M.Sc., Ph.D
Ika Hesti Agustin, S.Si., M.Si

Editorial Board

Prof. Surahmat
Tita Khalis Maryati
Arika Indah Kristiana
Elsa Yuli Kurniawati
Rosanita Nisviasari
Ika Nur Maylisa
Dwi Agustin Retno Wardani

Scientific Committee and Reviewers

Prof. Ismail Naci Cangul
Prof. V. Lokesha
M. Venkatachalam

Prof. M. Salman A. N.
Prof. Slamin
Prof. Suratno
Dwi Wahyuni
Roslan Hasni
Kiki A. Sugeng
Liliek Susilowati
Syaiful Bukhori
Antonius Cahya Prihandoko
Khairul Anam

Chairperson
Secretary

Universitas Islam Malang
Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia
IKIP PGRI Jember, Indonesia

Rector of the University of Jember
Vice Rector of the University of Jember

Uludag University, Turkey
Vijaya Nagara Sri Krishnadevaraya University, India
Kongunadu Arts and Science College, India
Institut Teknologi Bandung, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia
Universiti Malaysia Terengganu, Malaysia
University of Indonesia, Indonesia
Universitas Airlangga, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia
University of Jember, Indonesia

Peer review statement

The committees of the Fifth International Conference on Combinatorics, Graph Theory, and Network Topology would like to express gratitude to all Committees and Reviewers for the volunteering support and contribution in the editing and reviewing process.

PAPER • OPEN ACCESS
Peer review declaration
To cite this article: 2022 J. Phys.: Conf. Ser. 2157011002
You may also like
Peer review declaration
- Peer review declaration
Peer review declaration

View the article online for updates and enhancements.

Peer review declaration

All conference organisers/editors are required to declare details about their peer review. Therefore, please provide the following information:

- Type of peer review: The type of peer review article is Double-blind review where the authors name and affiliation of the paper are hidden. The reviewer independently made some suggestion and corrections on the papers.
- Conference submission management system: All the papers were submitted online through EasyChair system https://easychair.org/conferences/?conf=the5thiccgant2021
- Number of submissions received: 138
- Number of submissions sent for review: 95
- Number of submissions accepted:71
- Acceptance Rate (Number of Submissions Accepted / Number of Submissions Accepted X 100): 51.45\%
- Average number of reviews per paper: 3
- Total number of reviewers involved: 54
- Any additional info on review process: The reviewers gave some feedback to each paper based on the referring guidelines such as the state of the art of research, methodology, a gap, a proposed novelty, originality, and language. They also review the originality of the research finding, and the bibliography cited in their paper. In general they have made refereeing on three things, namely the content, layout, and language.
- Contact person for queries:

Prof. Drs. Dafik, M.S., Ph.D.
University of Jember
d.dafik@unej.ac.id

We acknowledge that

Reni Umilasari

Muhammadiyah Jember University
has participated as a PAPER PRESENTER in The 5th International Conference on Combinatorics, Graph Theory, and Network Topology entitled
DETERMINATION OF BULOG REGIONAL SUB-DIVISIONS IN EAST JAVA USING CONNECTED
DOMINATION NUMBER THEORY
University of Jember - Indonesia
21 stre22nd August 2021

NOTICE：Ukraine：Read IOP Publishing＇s statement．

Table of contents

Volume 2157
 2022

4 Previous issue Next issue＊
The 5th International Conference on Combinatorics，Graph Theory，and Network Topology （ICCGANT 2021）21－22 August 2021，Jember，Indonesia

Accepted papers received： 08 December 2021
Published online： 17 January 2022

Open all abstracts

Preface

OPEN ACCESS

The Fifth International Conference on Combinatorics，Graph Theory，and Network Topology 2021

+ Open abstract 国 View article 咀 PDF

OPEN ACCESS

011002
Peer review declaration
\boldsymbol{O} Open abstract 婔 View article 気 PDF

Combinatorics

OPEN ACCESS

Sigma chromatic numbers of the middle graph of some families of graphs
J A Manamtam，A D Garciano and M A C Tolentino
＋Open abstractView article
國 PDF

OPEN ACCESS

Edge odd graceful of alternate snake graphs

OPEN ACCESS

Implementation of the greedy algorithm on graph coloring
T N Sipayung，S Suwilo，P Gultom and Mardiningsih
\pm Open abstract 国 View article PDF

OPEN ACCESS

The local strong metric dimension in the join of graphs
R Amalia，Firdausiyah，T Yulianto，Faisol and Kuzairi

+ Open abstract 国 View article 敛 PDF

OPEN ACCESS

On twin edge mean colorings of graphs
J D Tolentino，M A C Tolentino and E B Bernales
＋Open abstract 婔 View article 莶 PDF

OPEN ACCESS

Some result on integrality of several matrix representation of complete r－uniform hypergraph

A Y Zakiyyah
＋Open abstract 国 View article 匃 PDF

OPEN ACCESS

On r－dynamic coloring of central vertex join of path，cycle with certain graphs
N Mohanapriya，K Kalaiselvi，V Aparna，Dafik and I H Agustin
＋Open abstract 鹤 View article PDF

OPEN ACCESS

Anonymously tracking covid－19 patient using labeling graph approach and GPS tracking technology

Nuril Lutvi Azizah and Uce Indahyanti
\pm Open abstract 国 View article 興 PDF

Determination of bulog regional sub－division in east java using connected domination number theory

Reni Umilasari and Ilham Saifudin
\pm Open abstract 國 View article PDF
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy and Cookies policy．

The mixed metric dimension of wheel－like graphs
Darmaji and N Azahra
＋Open abstract 国 View article 匃 PDF

OPEN ACCESS

Graphs with strong 3－rainbow index equals 2
A N M Salman，Z Y Awanis and S W Saputro
＋Open abstract 婔 View article 気 PDF

OPEN ACCESS

On resolving efficient domination number of path and comb product of special graph
I Kusumawardani，Dafik，E Y Kurniawati，I H Agustin and R Alfarisi
\pm Open abstract 婔 View article PDF

OPEN ACCESS

012013
On graceful chromatic number of some graphs
M L Asy＇ari，Dafik，I H Agustin，R Nisviasari and R Adawiyah
\pm Open abstract 国 View article 僉 PDF

OPEN ACCESS

012014
On the rainbow antimagic coloring of vertex amalgamation of graphs
J C Joedo，Dafik，A I Kristiana，I H Agustin and R Nisviasari
$\boldsymbol{+}$ Open abstract 国 View article PDF

OPEN ACCESS

On the resolving strong domination number of some wheel related graphs
R Humaizah，Dafik，A I Kristiana，I H Agustin and E Y Kurniawati
\pm Open abstract 婔 View article PDF

OPEN ACCESS

On the r－dynamic chromatic number of subdivision of wheel graph
R Z Riba＇ah，Dafik，A．I Kristiana，I．N Maylisa and Slamin
＋Open abstract 婔 View article 興 PDF

Improving the robustness of the affine cipher by using a rainbow antimagic coloring This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see RNisviasari，Dafik $\begin{aligned} & \text { Ki Aghstin，E Y Kurniawati，I N Maylisa and B J Septory } \\ & \text { our Privacy and }\end{aligned}$
\pm Open abstract 国 View article PDF

OPEN ACCESS

On local vertex irregular reflexive coloring of graphs
Dafik，D J Koesoemawati，I H Agustin，E Y Kurniawati and R Nisviasari
\pm Open abstract 国 View article 僉 PDF

OPEN ACCESS

The rainbow vertex antimagic coloring of tree graphs
Marsidi，Ika Hesti Agustin，Dafik，Elsa Yuli Kurniawati and Rosanita Nisviasari
＋Open abstract 婔 View article 咀 PDF

Applied Mathematics

OPEN ACCESS

012020
Determination of Hue Saturation Value（HSV）color feature in kidney histology image
I Kurniastuti，E N I Yuliati，F Yudianto and T D Wulan
$\boldsymbol{+}$ Open abstract 国 View article PDF

OPEN ACCESS

Decision－making using fuzzy TOPSIS for selecting beginner UMKM that receive business funding

N L Negari，A Riski，A Pradjaningsih and A Kamsyakawuni
\boldsymbol{O} Open abstract 国 View article 国 PDF

OPEN ACCESS
H－infinity for autonomous surface vehicle position estimation
T Herlambang，D Rahmalia，A Suryowinoto，F Yudianto，F A Susanto and M Y Anshori
\pm Open abstract 国 View article 产 PDF

OPEN ACCESS

Estimation of Packed Red Cells（PRC）in Bojonegoro blood bank using Modified Kalman Filter

A Muhith，T Herlambang，D Rahmalia and D F Karya
＋Open abstract 国 View article 国 PDF
 numPcteaforeedneentriss policy．

T Herlambang，D Rahmalia，H Nurhadi，A Suryowinoto and D F Karya
＋Open abstract
View article
國 PDF

OPEN ACCESS

Implementation of the ACS－RVND algorithm on the VRP variant and its application to distribution optimization

Sapti Wahyuningsih，Darmawan Satyananda and Lucky Tri Oktoviana
＋Open abstract
View article
咸 PDF

OPEN ACCESS

Seawater salinity modeling using bivariate probit regression
Faisol，Tony Yulianto，Arsyiah，Sugiono，Achmad Basuki and Muhammad Agus Zainuddin
＋Open abstract 國 View article PDF

OPEN ACCESS
Profitability estimation of XYZ company using H－infinity and Ensemble Kalman Filter M Y Anshori，T Herlambang，P Katias，F A Susanto and R R Rasyid
$\boldsymbol{+}$ Open abstract 国 View article 閊 PDF

OPEN ACCESS

012028
Oscillation and Asymptotic Behavior of Second－Order Half－Linear Noncanonical Difference Equations of Advanced Type

P Gopalakrishnan，A Murugesan，Dafik and I H Agustin

+ Open abstract 国 View article 遇 PDF
OPEN ACCESS 012029

Estimation of Thrombocyte Concentrate（TC）in PMI Gresik using unscented and square root Ensemble Kalman Filter

A Muhith，T Herlambang，D Rahmalia，Irhamah and D F Karya
\pm Open abstract 国 View article PDF

OPEN ACCESS
Hybrid clustering and classification methods to find out the pattern of the spread of covid－19 in East Java province

M W F Umam，M Fatekurohman and D Anggraeni
＋Open abstract 婔 View article 気 PDF

PR15 Site GSEESSokies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy and Cookies policy．

Design of conveyor table with quality function deployment method and statistical analysis of anthropometry data approach as a physical distance tool for SMEs

Zulkani Sinaga，Yuri Delano Regent Montororing and Achmad Muhazir
＋Open abstract 国 View article 四 PDF

OPEN ACCESS

Production process improvements to minimize product defects using DMAIC six sigma statistical tool and FMEA at PT KAEF

Yuri Delano Regent Montororing，Murwan Widyantoro and Achmad Muhazir

```
+ Open abstract 罒 View article 咀 PDF
```


OPEN ACCESS

n－cutting site of DNA splicing language for single string and palindromic rule
N M Ruslim，Y Yusof and N Adzhar
＋Open abstract 国 View article 四 PDF

OPEN ACCESS

012034
The quality of coffee bean classification system based on color by using k－nearest neighbor method

Nelly Oktavia Adiwijaya，Hammam Iqomatuddin Romadhon，Januar Adi Putra and Dewangga Putra Kuswanto

+ Open abstract 国 View article PDF

Education

OPEN ACCESS

012035
Combination of high order kernel estimators for estimation of fruit trees biomass on critical land

Zulfikar，Munawarah and Ambar Susanti
＋Open abstract 国 View article 卥 PDF

OPEN ACCESS

A meta analysis study：is Problem Based Learning（PBL）effective toward students＇ mathematical connections ability？

S Aisyah and D Usdiyana
＋Open abstract 国 View article PDF

An analysis of students learning independence in mathematics based on google classroom This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see

OPEN ACCESS

High order thinking skills：can it arise when a prospective teacher solves a controversial mathematics problem？

Alfiani Athma Putri Rosyadi，Cholis Sa＇dijah，Susiswo and Swasono Rahardjo
＋Open abstract 国 View article PDF

OPEN ACCESS

An illustration of mathematical skills：the procept（process－concept）junior high school students in solving mathematical problems

Prayogo，St Suwarsono and Siti Khabibah
＋Open abstract 婔 View article PDF

OPEN ACCESS

The analysis of students metaliteracy under the implementation of RBL－STEM in solving graph rainbow antimagic coloring problems

E Y Kurniawati，Dafik，I H Agustin and I N Maylisa
\pm Open abstract 国 View article PDF

OPEN ACCESS

Science process skills students on cells and tissues concept during the covid－19 pandemic： how did it achieve？

H Fitrianingrum and M F Noor
＋Open abstract 婔 View article 咀 PDF

OPEN ACCESS

Improving students＇mathematical intuitive thinking ability using analogy learning model
L Kurniawati，I S Farhana and R Miftah
＋Open abstract 国 View article 包 PDF

OPEN ACCESS

Didactical design of mathematical reasoning on three dimensional in high school
R Miftah，A N Amalina and L Kurniawati
＋Open abstract 婔 View article 办 PDF

Yurniwati and Erry Utomo
＋Open abstract 国 View article 包 PDF

OPEN ACCESS

Development of mathematics teaching－learning material with metaphors approach
G Dwirahayu，I D Handayani，O Suhyanto，E Musyrifah and D Sobiruddin
＋Open abstract 国 View article 卥 PDF

OPEN ACCESS

The Science Environment Technology Society（SETS）based e－module development with project based learning model in colloidal learning

W Azura，A Silalahi，M Zubir and Nurfajriani
＋Open abstract 国 View article PDF

OPEN ACCESS
The usefulness of LabXChange virtual lab and PhyPhox real lab on pendulum student practicum during pandemic

D Nanto，R D Agustina，I Ramadhanti，R P Putra and D Mulhayatiah
＋Open abstract 國 View article PDF

JOURNAL LINKS

Journal home

Journal Scope
Information for organizers
Information for authors
Contact us
Reprint services from Curran Associates

This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy and Cookies policy．

Determination of bulog regional sub-division in east java using connected domination number theory

To cite this article: Reni Umilasari and Ilham Saifudin 2022 J. Phys.: Conf. Ser. 2157012009

View the article online for updates and enhancements.

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Determination of bulog regional sub-division in east java using connected domination number theory

Reni Umilasari ${ }^{1}$, Ilham Saifudin ${ }^{1}$
${ }^{1}$ Study Program of Informatics Engineering, Universitas Muhammadiyah Jember, Jl. Karimata 49 Jember 68121, Indonesia
E-mail: reni.umilasari@unmuhjember.ac.id, ilham.saifudin@unmuhjember.ac.id

Abstract

Bulog is a state-owned public company engaged in food logistics. There are about 18 Bulog warehouses in East Java Province with an uneven distribution. Because the scope of Bulog's business includes logistics or warehousing, surveys and pest eradication, provision of plastic bags, transportation business, food commodity trading and retail business, there must be good coordination between regional sub-divisions and warehouse complexes. In this study, the minimum regional sub-division recommendations in the East Java region were determined using the theory of connected domination number in graphs. The location of the warehouse complex is described as the vertex and adjacent warehouse complexes are connected by edges. In this research, we also determine the connected domination number of unicyclic graph and vertex amalgamation operations for several classes of graphs.

1. Introduction

BULOG is a state-owned public company engaged in food logistics. The company's business scope includes logistics/warehousing, surveys and pest control, supply of plastic bags, transportation business, food commodity trading and retail business. As a company that continues to carry out public duties from the government, BULOG continues to carry out activities to maintain the Basic Purchase Price for grain, stabilize prices, especially basic prices, distribute rice for social assistance (Bansos) and manage food stocks [1].

BULOG in an area is tasked with meeting the rice consumption needs not only for its own region, but BULOG is also tasked with supplying other regions with a rice deficit. At Perum BULOG, the distribution of rice stocks is known as "MoveNas" which stands for Move Nasional. Prior to the Move Nas, Perum BULOG will meet stock needs in all warehouses in each region through procurement from local farmers [1]. If the stock in the area has been met, the rice will be moved to other areas that need it to meet the rice stock in the area. This is done so that the distribution of rice throughout Indonesia is even. In order to optimize this role, it is necessary to prepare a strategy in terms of regulating which Bulogs have excess stock, so that other Bulogs which usually require supplies can be observed in order of priority. The distance and access between Bulogs also need to be considered. To observe this, we can use connected dominating number theory. Perum BULOG has more than a thousand warehouse units spread throughout Indonesia which are managed by 26 Regional Offices. These warehouses are used to store rice reserves that have been absorbed by local farmers. Of all Regional Offices, there are 3 regions that have the largest storage capacity. In the first position, the East Java Regional Office has a total of 378 warehouse units with a total capacity of more than one million tons
[1]. The distribution of Bulog's warehouse units can be described as points on the graph, while the easy and close distribution access is analogous to the edges connecting the points. Furthermore, from the graph formed, it can be determined which main warehouses are considered as supplying warehouses for rice stocks for other areas.
Domination is one of the topics discussion in graph theory which is known from the philosophy of the chess game. Dominating Number is one of the interesting topics in graph theory. The dominating number has existed since 1850 [2]. It appeared among chess fans in Europe, namely the determination of how many queens should be placed on an 8×8 chessboard, so that all tiles on the chessboard can be controlled by the queen and the number of queens placed on the board and it must be minimal. The problem of domination is one of the most widely studied topics in graph theory [3]. Several studies on dominating number have been developed, including: On Domination Number of Cartesian Product of Graphs yang diteliti oleh Gravier dan Mollard [4], The Domination Number of The Cartesian Products of Path and Cycles [5]. While in 1997, topics related to dominating number were developed namely connected dominating set [6]. Other research related to the dominating of the graph, such as Split Domination Number of Some Special Graphs [7,10] and Results Connecting Domination, Steiner and Steiner Domination Number of Graphs by Ramalakshmi and K. Palani [8]. The concept of connected dominating set is the suitable concept for Determination of Bulog Regional Sub-Divisions. In 1996 Some inequalities about connected domination number are given by Cheng Bo and Bollian Liu in 1996 [9]. And in 2013, some researcher can determine the Bounds on The Connected Domination Number of a Graph based on the value of girth, minimum degree, and connected order sum number [11]. The formal definition of dominating set and dominating of graph are showed in Definition 1 and Definition 2 as below.

Definition 1. [12] Let G be a graph with vertex set V and edge set E. Let S be the subset of vertex set V . If every vertex in $\mathrm{V} \backslash \mathrm{S}$ is adjacent to minimum one vertex of S then S is said to be a dominating set.

Definition 2. [12] The size of a smallest dominating set is referred as the dominating number of a graph G denoted by $\gamma(\mathrm{G})$.
While the main difference of dominating set and connected dominating set is if the connected dominating set must be in the form of subgraph of the main graph like in Definition 3. Figure 1 gives the difference among dominating set and connected dominating set of a graph.

Definition 3. [6] A dominating Set D is said to be connected dominating set, if the induced sub graph D is connected. The connected domination number $\gamma_{-} \mathrm{c}(\mathrm{G})$ is the minimum cardinality of a connected dominating set.

Figure 1. A graph \boldsymbol{G} with dominating number $\boldsymbol{\gamma}(\boldsymbol{G})=\mathbf{3}$ and connected dominating number $\boldsymbol{\gamma}_{\boldsymbol{c}}(\boldsymbol{G})=$ 4.

2. Results and Discussion

We start this section by giving the observation concerning on the connected domination number of unicyclic graph such as cycle with two pendant, pan graph, subdivision of pan graph, and subdivision of sun graph.

Observation 1. Let C_{n}^{2} be a cycle with two pendant graph, for $n \geq 3, \gamma_{c}\left(C_{n}^{2}\right)=\gamma_{c}\left(C_{n}\right)$.
In Theorem 4 we know that $\gamma_{c}\left(C_{n}\right)=n-2$. For C_{n}^{2} graph, it has minimum connected dominating set if two vertices which adjacent to the pendant are elements of connected dominating set, so it can dominate both of the pendants. Thus, we can say that $\gamma_{c}\left(C_{n}^{2}\right)=\gamma_{c}\left(C_{n}\right)$.

Observation 2. Let $\mathcal{P}(n)$ be a pan graph, for $n \geq 3, \gamma_{c}(\mathcal{P}(n))=\gamma_{c}\left(C_{n}\right)$.
This case is equivalent with observation 9 , the difference is pan graph just hs one pendant. Thus the minimum connected dominating set is $n-2$ where the vertex whose degree equals three is also element of connected dominating set. Therefore we can say that $\gamma_{c}(\mathcal{P}(n))=\gamma_{c}\left(C_{n}\right)$.

Figure 2. Connected dominating set of unicyclic graph.
Observation 3. Let $S(\mathcal{P}(n))$ be a subdivision of pan graph, for $n \geq 3, \gamma_{c}(S(\mathcal{P}(n)))=2 n-1$.
Subdivision of pan graph can be said as a cycle graph which one of the vertex has degree equals tree and connected to two vertices (it form a path with length is two). Then the connected dominating set will be minimum if we choose $2 n-2$ vertices in cycle are element of connected dominating set and also a vertex that adjacent to the vertex whose the degree equals tree. So, the connected dominating number is $\gamma_{c}(S(\mathcal{P}(n)))=2 n-2+1=2 n-1$.

Observation 4. Let $S(S(n))$ be a subdivision of sun graph, for $n \geq 3, \gamma_{c}(S(S(n)))=3 n-1$.
Subdivision of sun graph has n pendant, so all vertices which adjacent to the pendant must be elements of connected dominating set. To make a connected subgraph, so all vertices in the cycle also must be elements of connected dominating set. For getting the minimum cardinality, we can remove one vertex which the degree is two for not to be elements of connected dominating number. Then, $\gamma_{c}(S(S(n)))=3 n-1$.

Next, we show the Connected Dominating Number of vertex amalgamation graph that will be describing on Theorem 1 to Theorem 4.

Theorem 1. Let $G=\mathrm{V}_{\{v\}}^{1}\left\{W_{n_{1}}, W_{n_{2}}, \ldots, W_{n_{t}}\right\}$ is amalgamation vetex of wheel graph, then

$$
\gamma_{c}(G)=\left\{\begin{array}{cc}
1, & v \text { is centre vertex of } W_{n_{i}}, 2 \leq i \leq t \\
t+1, & v \text { is outer vertex of } W_{n_{i}}, 2 \leq i \leq t
\end{array}\right.
$$

Proof: If the linkage vertex of $G=\mathrm{V}_{\{v\}}^{1}\left\{W_{n_{1}}, W_{n_{2}}, \ldots, W_{n_{t}}\right\}$ is centre vertex of $W_{n_{i}}$ then for any $k \in V(G) \backslash v$ show that $d(v, k)=1$. It means that v can dominate all vertices of $V(G)$, thus $\gamma_{c}(G)=$ 1. If the linkage vertex of $G=\bigvee_{\{v\}}^{1}\left\{W_{n_{1}}, W_{n_{2}}, \ldots, W_{n_{t}}\right\}$ is outer vertex of $W_{n_{i}}$ then for any k element of outer vertex in every $W_{n_{i}}$ show that $d(v, k)=2$. Let S is connected dominating number of G, so we
can take v_{i} which the centre vertex of every $W_{n_{i}}$ with $d\left(v, v_{i}\right)=1$ as the element of S. Then the set $S=\left\{v, v_{i} \mid 2 \leq i \leq t\right\}$ is subgraph of G and it can dominate all vertices of $V(G)$, thus $\gamma_{c}(G)=t+1$.

Theorem 2. Let $G=\bigvee_{\{v\}}^{1}\left\{F_{n_{1}}, F_{n_{2}}, \ldots, F_{n_{t}}\right\}$ is amalgamation vetex of frienship graph, then

$$
\gamma_{c}(G)=\left\{\begin{array}{cc}
1, & v \text { is centre vertex of } F_{n_{i}}, 2 \leq i \leq t \\
t+1, & v \text { is any vetex of degree } 2,2 \leq i \leq t
\end{array}\right.
$$

Proof: If the linkage vertex of $G=\bigvee_{\{v\}}^{1}\left\{F_{n_{1}}, F_{n_{2}}, \ldots, F_{n_{t}}\right\}$ is centre vertex of $F_{n_{i}}$ then for any $k \in$ $V(G) \backslash v$ show that $d(v, k)=1$. It means that v can dominate all vertices of $V(G)$, thus $\gamma_{c}(G)=1$. If the linkage vertex of $G=\bigvee_{\{v\}}^{1}\left\{F_{n_{1}}, F_{n_{2}}, \ldots, F_{n_{t}}\right\}$ is any vetex of degree 2 of $F_{n_{i}}$ then for any k element of $V(G) \backslash v$ show that $d(v, k) \geq 2$. Let S is connected dominating number of G, so we can take v_{i} which the centre vertex of every $F_{n_{i}}$ with $d\left(v, v_{i}\right)=1$ as the element of S. Then the set $S=\left\{v, v_{i} \mid 2 \leq\right.$ $i \leq t\}$ is subgraph of G and it can dominate all vertices of $V(G)$, thus $\gamma_{c}(G)=t+1$.

Theorem 3. Let $G=\mathrm{V}_{\{v\}}^{1}\left\{C_{n}, P_{m}, S_{k}, B_{x, y}\right\}$ is amalgamation vertex of cycle, path, star, and complete bipartite graph with the each order is $n \geq 3, m \geq 2, k \geq 3, x, y \geq 2$, then

$$
\gamma_{c}(G)=\left\{\begin{array}{l}
n+m-2, \quad \text { vof } S_{k} \text { is one of the pendant, v of } P_{m} \text { is } v_{1} \text { or } v_{m} \\
n+m-3, \quad \text { vof } S_{k} \text { is one of the pendant, vof } P_{m} \text { is } v_{i} \text { for } 2 \leq i \leq n-1
\end{array}\right.
$$

Proof: A cycle graph has a connected dominating number that is the number of vertices minus 2 (Theorem 4). The connected dominating vertex in a cycle graph are all vertices except two neighboring vertices, in this case all vertices can be chosen to be the connected dominating vertex. In a path graph, the connected dominating vertex are all vertices of degree 2 . Thus, there are vertices that cannot be a dominating vertex, namely a vertex of degree 1 . However, for the first case, one of the vertex whose the degree 1 in path is linkage vertex for vertex amalgamation. The star graph has a connected dominating number equal to one and one of its pendant is a linkage vertex. Meanwhile, in a complete bipartite graph, the connected dominating number is equal to two, i.e. two adjacent vertices. One of these vertex is the linkage vertex. Therefore connected dominating number of $G=$ $\mathrm{V}_{\{v\}}^{1}\left\{C_{n}, P_{m}, S_{k}, B_{x, y}\right\}$ is the sum of each connected dominating number in every graph except a complete bipartite graph because an element of connected dominating set set is a linkage vertex, then
$\gamma_{c}=\gamma_{c}\left(C_{n}\right)+\gamma_{c}\left(P_{m}\right)+\gamma_{c}\left(S_{k}\right)+\left(\gamma_{c}\left(B_{x, y}\right)-1\right)$
$\gamma_{c}=(n-2)+(m-2)+1+(2-1)$
$\gamma_{c}=n+m-4+2$
$\gamma_{c}=n+m-2$
While for the second case, the difference is that the linkage vertex of the graph P_{m} is a vertex of degree 2, then reduce one vertex of connected dominating number P_{m}. Therefore

```
\(\gamma_{c}=\gamma_{c}\left(C_{n}\right)+\left(\gamma_{c}\left(P_{m}\right)-1\right)+\gamma_{c}\left(S_{k}\right)+\left(\gamma_{c}\left(B_{x, y}\right)-1\right)\)
\(\gamma_{c}=(n-2)+((m-2)-1)+1+(2-1)\)
\(\gamma_{c}=n+m-5+2\)
    \(\gamma_{c}=n+m-3\)
```

This number is minimum because subtracting just one from the connected dominating vertex will cause the subgraph that is formed to be unconnected.

As an example of using the theorem above, suppose graph G In Figure 3 is $G=$ $\mathrm{V}_{\{v\}}^{1}\left\{C_{6}, P_{6}, S_{7}, B_{2,3}\right\}$, then it has $(6+6-2)=10$ connected dominating number.

Figure 3. Amalgamation vertex of cycle, path, star, and complete bipartite graf.
Theorem 4. Let $G=\mathrm{V}_{\{v\}}^{1}\left\{C_{n}, P_{m}, S_{k}, B_{x, y}\right\}$ is amalgamation vertex of cycle, path, star, and complete bipartite graph with the each order is $n \geq 3, m \geq 2, k \geq 3, x, y \geq 2$, then

$$
\gamma_{c}(G)=\left\{\begin{array}{l}
n+m-3, \quad \text { vof } S_{k} \text { is a vertex with order } n-1, v \text { of } P_{m} \text { is } v_{1} \text { or } v_{m} \\
n+m-4, \quad \text { vof } S_{k} \text { is a vertex with order } n-1, v \text { of } P_{m} \text { is } v_{i} \text { for } 2 \leq i \leq n-1
\end{array}\right.
$$

Proof: By the same procedure to the proof in Theorem 15, we can start by observe that a cycle graph with order n has a connected dominating number equals $n-2$ (Theorem 4). The connected dominating vertex in a cycle graph are all vertices except two neighboring vertices, in this case all vertices can be chosen to be the connected dominating vertex. In a path graph, the connected dominating vertex are all vertices of degree 2 . Thus, there are vertices that cannot be a dominating vertex, namely a vertex of degree 1 . However, for the first case, one of the vertex whose the degree 1 in path is linkage vertex for vertex amalgamation. The star graph has a connected dominating number equal to one and it is the centre vertex or vertex whose the degree is $k-1$. It is also a linkage vertex in $=\mathrm{V}_{\{v\}}^{1}\left\{C_{n}, P_{m}, S_{k}, B_{x, y}\right\}$. Meanwhile, in a complete bipartite graph, the connected dominating number is equal to two, i.e. two adjacent vertices. One of these vertex is the linkage vertex. Therefore connected dominating number of $G=\mathrm{V}_{\{v\}}^{1}\left\{C_{n}, P_{m}, S_{k}, B_{x, y}\right\}$ is the sum of each connected dominating number in every graph except star and complete bipartite graph because an element of connected dominating set set is a linkage vertex, then
$\gamma_{c}=\gamma_{c}\left(C_{n}\right)+\gamma_{c}\left(P_{m}\right)+\left(\gamma_{c}\left(S_{k}\right)-1\right)+\left(\gamma_{c}\left(B_{x, y}\right)-1\right)$
$\gamma_{c}=(n-2)+(m-2)+(1-1)+(2-1)$
$\gamma_{c}=n+m-4+1$
$\gamma_{c}=n+m-3$
While for the second case, the difference is that the linkage vertex of the graph P_{m} is a vertex of degree 2 , then reduce one vertex of connected dominating number P_{m}. Therefore
$\gamma_{c}=\gamma_{c}\left(C_{n}\right)+\left(\gamma_{c}\left(P_{m}\right)-1\right)+\left(\gamma_{c}\left(S_{k}\right)-1\right)+\left(\gamma_{c}\left(B_{x, y}\right)-1\right)$
$\gamma_{c}=(n-2)+((m-2)-1)+(1-1)+(2-1)$
$\gamma_{c}=n+m-5+1$
$\gamma_{c}=n+m-4$
This number is minimum because subtracting just one from the connected dominating vertex will cause the subgraph that is formed to be unconnected.

The last result is the case study of determination of bulog regional sub-divisions in east java using connected domination number theory. In this paper we only choose 18 vertex and 20 edes. Based on the location in the Figure 4, we represent the map into Bulog Office Graph or it call $B U-$ graph like in Figure 5. Based on the theory of connected domination number and the result of the observation of $B U-g r a p h$, we get 6 vetices which make a subgraph of $B U-g r a p h$ and can dominate all vertices in $B U-$ graph. Thus. $\gamma_{c}(B U-\operatorname{graph})=6$.

Figure 4. Map of bulog office in East Java.

Figure 5. Representation of connected dominating set of bulog office graph.

3. Conclusion

In this paper, we can determine the connected domination number of unicyclic graph and some vertex amalgamation graphs which consisting of wheel, friendship, cycle, path, star, and complete bipartite graphs with some possibilities for the position of linkage vertex amalgamation. By apllying the theory, we also can determine the number of Bulog Regional Sub-divisions in east Java. From 18 location, we get 6 location can be recommended as Bulog Regional Sub-divisions to dominate all location.

Open problem 1. Find the connected domination number for another particular classes of graphs and the graphs obtained from graph operations such as edge amalgamation, join, shackle, etc.

Open problem 2. Find the algorithm to solve the connected domination number for case in real life.

Acknowledgment

We gratefully acknowledge the support from Informatics Engineering Study Program of Universitas Muhammadiyah Jember year 2021.

References

[1] Bulog 2015 Standar Operasional Prosedur Pengadaan Gabah/Beras Dalam Negeri di Perum Bulog Tahun 2015 Perum Bulog Jakarta 213
[2] Mahalingan G 2005 Connected Domination in Graphs Department of Mathematics College of Arts and Sciences University of South Florida
[3] Parui S \& Adhikari A 2011 The Domination Numbers of Cylindrical Grid Graphs Applied Mathematics and Computation 217 4879-4889
[4] Gravier S \& Mollard M 1997 On Domination Numbers of Cartesian Product of Paths. Discrete Applied Mathematics 80 247-250
[5] Pavlic P \& Zerovnik J 2013 A Note on The Domination Number of The Cartesian Products of Path and Cycles Kragujevac Journal of Mathematics 7(2) 275-285
[6] Sampathkumar E \& Walikar H.B 1979 The Connected Domination Number of a Graph Journal Mathematics Physics Sience 13(6) 607-613
[7] Maheswari S \& Meenakshi S 2017 Split Domination Number of Some Special Graphs International Journal of Pure and Applied Mathematics, 116 (24) 103-117
[8] Ramalakshmi1 K \& Palani K 2020 Results Connecting Domination, Steiner and Steiner Domination Number of Graphs Advances in Mathematics Scientific Journal 9 (4) 2631-2641
[9] Bo C \& Liu B 1996 Some Inequalities about Connected Domination Number Discrete Mathematics 159 241-245
[10] Wahyuni Y, Utoyo M.I, Slamin 2017 Domination Number of Vertex Amalgamation of Graphs Journal of Physics Conf Series 855012059
[11] Desormeaux W.J, Haynes, T.W, Henning, M.A 2013 Bounds on The Connected Domination Number of a Graph Discrete Mathematics 161 2925-2931
[12] Darmaji, Rinurwati, Wahyudi S 2021 The Domination Number of 2-Neighbourhood-Corona. Journal of Physics: Conference Series 1821012011

