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Abstract— Tourism during the Covid-19 pandemic has 

paralysis, even though tourism is a source of regional income. In 

the new normal period, tourism began to rise again. Madura 

Tourism Sentiment Analysis is needed for regional parties and 

tourism developers to find a public opinion about tourism places 

in Madura that have been vacuumed for a long time. The dataset 

used is opinion data on Twitter for nature, culinary and 

religious tourism in Madura. Data was taken during the New 

Normal period between April 2020 to August 2021. This 

research compared Manual Lexicon Based and TextBlob for 

labeling data. TF-IDF for term weighting. SVM, Naïve Bayes, 

and KNN methods with Tuning Parameters are compared for 

classification methods in sentiment analysis. Based on this 

research, the best Accuracy value is 94% for SVM Method or 

KNN Method using Manhattan measure and K-Value = 1. The 

most positive labels are obtained for three tourism categories: 

nature, culinary, and religious.  

Keywords—Sentiment Analysis, TextBlob, TF-IDF, KNN, 

Tuning Parameter, SVM, Tourism  

I. INTRODUCTION 

The location of Madura is in East Java that has a diversity 
of tourist attractions. Several categories of tourist attractions 
managed in Madura include nature tourism, historical tourism, 
cultural tourism, culinary tourism, religious tourism, and 
artificial tourism. The Covid-19 Pandemic period had 
indirectly paralyzed the tourism sector, which lasted almost 
two years. In contrast, the tourism sector is one source of local 
revenue [1]. Along with the New Normal, Tourism began to 
rise again. People are starting to follow health protocols in 
their activities outside the home, especially while on vacation. 

Twitter is one of the social media platforms used by the 
public to accommodate opinions or share information through 
the internet [2]. In terms of tourism, tourists also sometimes 
provide reviews of places visited through tweets on social 
media Twitter [3]. This New Normal period is the initial 
period for developing tourist areas after a long vacuum due to 
the Covid-19 Pandemic. Sentiment analysis techniques can be 
used to analyze review data from tourists to determine tourist 
satisfaction with the places visited. This technique can be 
helpful for the management of tourism places or local parties 
to develop the place according to tourist attractions. 

Previous research has used sentiment analysis techniques 
to determine visitor expectations of natural attractions [4]. In 
addition, sentiment analysis techniques have also been applied 
to determine the location of halal tourism globally, which 

visitors widely review on Twitter [5]. The sentiment analysis 
results can also be a feature in the forecasting concept [6] and 
can also be applied to the case of predicting visitors to a tourist 
spot [7]. The application of sentiment analysis as a 
complementary technique in the tourism recommendation 
system has been carried out previously [8]. The classification 
method used in sentiment analysis can also affect the system's 
accuracy value. Research [9] shows results that the use of the 
KNN method is better than the SVM method for real-time-
based twitter data sentiment analysis. So in this study uses 
KNN as a method of classification. The data to be used is 
tweet data for each tourism category, not only nature tourism. 
It is hoped that the three categories of popular tourist 
attractions and the level of satisfaction with these tourism 
categories will be known. 

Twitter data (tweet) was taken using a scrapper technique. 
A Groundtruth dataset is created for training and testing data 
from this Twitter data. Humans are often used as experts in the 
dataset labeling process to label the data. However, for large 
amounts of data, the labeling process in this way takes a very 
long time. The scrapper process can generate hundreds, 
thousands, and even hundreds of thousands of review data 
used as datasets. With this condition, it is hoped that there will 
be other labeling techniques that can help make ground truth 
with good accuracy. Previous studies used different lexicon-
based techniques in the dataset labeling process. Research [10] 
used a lexicon manual-based technique with the help of a 
lexicon dictionary. Research  [11][12] uses a lexicon-based 
technique using the python library, namely TextBlob. The use 
of TextBlob can be used for annotating tweets [13]. 

This study aims to analyze tourist satisfaction with several 
categories of tourist attractions in Madura. The contribution of 
this study is to measure the best accuracy of the K-Nearest 
Neighbor (KNN) method using hyper tuning parameters and 
compare the performance of the Lexicon-based manual with 
TextBlob in the dataset labeling process. 

 

II. PROPOSED METHOD 

A. Dataset 

Scrapping Twitter data is done using the python library: 
twint. In the process, there are keywords used to produce 
reviews by Madura tourism. Some of keyword used are: 
"Wisata Madura" (Madura Tourism), "Wisata Bangkalan" 
(Bangkalan Tourism), "Wisata Sampang" (Sampang 
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Tourism), "Wisata Pamekasan" (Pamekasan Tourism), and 
"Wisata Sumenep" (Sumenep Tourism), with a time period 
between April 2020 to August 2021. Other keywords used are 
by the characteristics of the tourist attractions as in Table 1. 

TABLE I.  TOURISM CATEGORY KEYWORD FOR SCRAPPING DATA  

Tourism category Keywords 

Nature tourism ‘pantai’, ‘gunung’, ‘bukit’, ‘air 
terjun’, ‘gua’, ‘api alam’ 

('beach', 'mountain', 'hill', 
'waterfall', 'cave', 'natural fire') 

Artificial tourism ‘mercusuar’, ’wisata buatan’ 

('lighthouse', 'artificial 
tourism') 

Culinary tourism ‘kuliner’, ‘soto’, ’sate’, ’rujak’, 
’nasi’, ’keripik’ 

('culinary', 'soto', 'sate', 'rujak', 
'rice', 'chips') 

Religious tourism ‘makam’, ‘sunan’, ‘masjid’, 
‘wali’, ‘religi’ 

('tomb', 'sunan', 'mosque', 
'wali', 'religion') 

History tourism ‘sejarah’, ‘museum’ 

('history', 'museum') 

Culture tourism ‘tari’, ‘kerapan sapi’ ‘adat’ 

('dance', 'kerapan sapi' 
'custom') 

  

Then the data from the scrapper will be cleaned, and 
duplication data removed process. The data text uses Bahasa 
Indonesian. The amount of data that will be used is 522 data. 
It can be seen from the amount of data that the most significant 
distribution is for the category of natural tourism. This shows 
that in the New Normal Era, many people visit natural or 
outdoor attractions than another category of tourism. The 
distribution of the scrapper data is shown in Figure 1. 

 

Fig 1. Distribution of tourism category tweet data 

Then the data will be labeled to create Groundtruth. In the 
labeling process, this research compares the labeling method 
using the manual Lexicon-based and  Python library Textblob. 
This dataset is preprocessed so as to produce terms that will 
later be extracted. Feature extraction is done using TF-IDF. 
Feature data is used in the classification process so as to 
produce a sentiment label.  

The stages of the sentiment analysis process are shown in 
Figure 2. The stages carried out from the proposed methods 
are preparing the dataset, feature extraction, classification 
process, and evaluation. In preparing the dataset, there is a 
Twitter data scraping process, data cleaning process, 
preprocessing, and dataset labeling process. The label 
sentiments used as the target class are 'positive', 'negative', and 
'neutral'. The evaluation process is carried out by using a 
confusion matrix to determine the evaluation value of analysis 
sentiment. Hypertuning parameters are performed during the 
classification process to form the best model. The best model 
is used by data testing to predict data sentiment. 

 

Fig 2. Proposed methods of sentiment analysis 

 

B. Scrapping Data Twitter 

The Twint Python library is used for the scrapping process. 
The additional configuration to filter data search, since, until, 
and output. In the configuration, the search is to enter the 
keywords used.  

 

 

Fig. 3 Stages of Scraping data using Twint 

 

Configuration since inputted time to start scrapping data is 
April 1, 2020. Configuration until inputted time to finish 
scrapping data is August 30, 2021. Configuration output is 
used to save tweet data from scrapping by a specific file name.  

C. Preprocessing Data 

Before preprocessing the data, a data cleaning stage is 
passed. Data Cleaning Process is cleaning tweet data that is 
not a review but in the form of information. In addition, the 
deleted tweet data is duplicate tweet data, and this happens 
because users often retweet the last tweet data. This kind of 
data needs to be deleted and not included in the dataset 
formation process. 
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Preprocessing is carried out on the data resulting from the 
cleaning process. The preprocessing stages carried out are 
case folding, tokenizing, stopword removal, stemming using 
the python library sastrawi. 

D. Dataset Labeling 

The process of labeling tweet data is done by comparing 
the concept of manual Lexicon-based and Text Blob. The 
manual lexicon-based concept analyzes data by looking at the 
context of the sentiment lexicon of the words used in 
composing sentences. This process requires a lexicon 
dictionary according to the language used in the tweet data. 
The dictionary produced from the research [10] is used for the 
Indonesian lexicon dictionary. This lexicon dictionary has 
6,609 negative and 3,609 positive words with scoring between 
-5 to +5. So the label is seen based on the total scoring value. 
A negative score means negative sentiment, a score of 0 means 
neutral sentiment, and an upbeat score means positive 
sentiment. 

 

Fig 4. Diagram of Labelling Process using TextBlob 

Using the Python library: Textblob is a tool for sentence-
level sentiment analysis. This textblob is also lexicon-based; 
only the corpus is taken from the NLTK corpora [14]. Polarity 
is taken based on the maximum number of words in the 
positive, negative, and neutral categories. The polarity score 
is worth -1 to 1, and there is a subjectivity value worth 0 to 1. 
The problem is that the corpora NLTK is a collection of 
English words, so that a translator will be needed for 
Indonesian documents. 

E. Feature Extraction using TF-IDF 

This research uses the TF-IDF feature obtained from 
tweet data. This feature is expected to represent and 
characterize in a review that has a specific polarity of 
sentiment [15]. Term Frequency (TF) is the value of the 
occurrence of a word in the document. Document Frequency 
(DF) describes how many documents contain a certain word. 
Each document will have a TF-IDF feature used in the 
document classification process. The TF-IDF formulation, 
according to [16], is as follows: 
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Where : 

|
| = total documents 

|�� ∈ 
: �� ∈ ��| = number of documents that have term �� 

��,� = number of occurences term �� in document �� 

∑ ��,��  = number of occurences all term in document �� 

 

F. Classification Process 

Three classification methods are used, namely the K-
Nearest Neighbor (KNN), Support Vector Machine (SVM), 
and Naïve Bayes methods. 

In KNN, various types of calculations identify a distance 
between the test sample and the training data. The distance 
similarity measure is an important role for final classification 
results. Euclidean distance is one of the most frequently used 
similarity measure methods in the KNN classification [17]. 
In this research, a comparison of accuracy with similarity 
measures using Euclidean Distance, Cosine, and Manhattan 
will be carried out. The K value also affects the accuracy [18], 
so a test scenario will also be carried out by changing the K 
value. 

Classification techniques is used to determine the class of 
sentiment document. The methods often used by previous 
studies are SVM [15][19] and Naïve Bayes [20]. This study 
will compare the method with the best KNN model after the 
hypertuning parameter process is carried out. 

The evaluation of the system that will be used is accuracy, 
recall, precision, and F-Measure. Here is the formula that will 
be used:  
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Where: 

TN = True Negative 
TP = True Positive 
FP = False Positive 
FN = False Negative 
   

III. RESULT AND DISCUSSION 

The data processed in this sentiment analysis process 
amounted to 522 tweets. There is a test scenario in the 
Labeling Process and Classification Method. 

A. Labeling Process Testing 

The system testing results using dataset labeling from 
Lexicon-based and TextBlob are shown in Table 2. The use of 
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TextBlob using KNN classifiar in the system produces higher 
accuracy than Lexicon Based, which is 0.94. Although it is 
better than Lexicon Based, this model does not provide 
optimal accuracy values. It is possible because the NLTK 
corpora use English, so the translator process can also affect 
the accuracy of the results. 

TABLE II.  COMPARING ACCURACY RESULT USING LEXICON BASED 

AND TEXTBLOB  

Labeling model Accuracy 

Lexicon Based 0,58 

TextBlob 0,94 

From Table 2, it is known that the use of Text Blob is 
better than manual Lexicon based. Figure 5 is the data 
distribution based on the results of labeling with Text Blob for 
each category of tourist attractions. From Figure 5, it can be 
seen that the most positive labels were obtained sequentially 
for three tourism categories: category of nature tourism, 
culinary tourism, and religious tourism. 

 

Fig 5. Distribution of dataset for each tourism category 

 

B. Classification Process Testing 

In the classification process testing, two scenarios are 
carried out. The scenario use a split dataset, 80% training and 
20% testing. The first test scenario measures the system's 
accuracy using the KNN method by tuning the K-value 
parameter and metric of the similarity measure. The results of 
the comparison of accuracy are shown in Table 3. 

TABLE III.  COMPARING ACCURACY USING KNN CLASSIFICATION 

WITH TUNING PARAMETER K VALUE AND SIMILARITY MEASURE 

K value 
Metric Similarity 

Measure 
Accuracy 

K=1 Cosine Similarity 0.93 

K=3 Cosine Similarity 0.90 

K=5 Cosine Similarity 0.89 

K=10 Cosine Similarity 0.84 

K=1 Manhattan 0.94 

K=3 Manhattan 0.88 

K=5 Manhattan 0.89 

K=10 Manhattan 0.84 

K=1 Euclidean Distance 0.93 

K=3 Euclidean Distance 0.87 

K=5 Euclidean Distance 0.91 

K=10 Euclidean Distance 0.82 

 

 The second test scenario compares the system accuracy 
values using three classification methods: KNN (K-value=1, 
Manhattan similarity), SVM, and Naïve Bayes. Table 4 shows 
the experimental results obtained in the test. The comparison 
of the three classification methods shows that the 
classification with the SVM method or KNN obtains the 
highest accuracy than the others, which is 0.94.  

TABLE IV.  COMPARATION RESULT OF CLASSIFICATION METHOD 

Method Accuracy Recall Precision F-Measure 

KNN 0.94 0.92  0.94  0.94 

SVM 0.94 0.92  0.94 0.94 

Naive Bayes 0.93 0.92 0.93 0.93 

 

 

 

Fig 6. Graph of Kvalue - similarity measure on KNN method 

From Table 3, it can be seen that the best K-value is 5 with a 
metric similarity measure using Cosine Similarity. For Fig.6, 
we can analyze that the value of K-value = 1 is the peak value 
of the system's maximum accuracy for the overall metric 
similarity measure.  

 

Fig 7. Graph of distribution polarity on tweet data 
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  The selection of algorithm performance that can be 
used as a reference is generally seen from the amount of FN 
and FP data. If the value is close to or symmetric, then the best 
reference that can be used is the accuracy value, but the F-
Measure value is the reference if it is not symmetric.  

Figure 6 shows the distribution of sentiment labels for 
classified tweet data; it can be seen that Madura Tourism is 
still considered reasonable by the public, with positive reviews 
that are still higher than negative reviews. 

 

IV. CONCLUSION 

Based on the experimental results that have been carried 
out, it can be concluded that Madura Tourism is still 
considered reasonable by the community, as evidenced by the 
high polarity value of tweet review data for positive sentiment 
compared to negative sentiment, which is 48.7%. 

This research found that the labeling process using Text 
Blob produces better accuracy for the own dataset than manual 
lexicon-based. Based on the data distribution of Text Blob 
labeling results, it is known that the most positive labels are 
obtained sequentially for three tourism categories, namely: 
category of nature tourism, culinary tourism, and religious 
tourism. 

From the test scenario, it is found that sentiment analysis 
uses the SVM Method or KNN method with a K-value of 1, 
and the metric used is Manhattan which has the best accuracy 
value, which is 94%. The translation results for tweet before 
labelling process using TextBlob, word correction method and 
POS Tagging in tweet reviews can affect the evaluation result. 
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