PENERAPAN N-GRAM TERHADAP ANALISIS SENTIMEN PADA FITUR BELANJA TIKTOKSHOP MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR

Lestari, Riska Dwi Ayu (2022) PENERAPAN N-GRAM TERHADAP ANALISIS SENTIMEN PADA FITUR BELANJA TIKTOKSHOP MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR. Undergraduate thesis, Universitas Muhammadiyah Jember.

[img] Text
a. PENDAHULUAN.pdf

Download (1MB)
[img] Text
b. ABSTRAK.pdf

Download (261kB)
[img] Text
c. BAB 1.pdf

Download (286kB)
[img] Text
d. BAB 2.pdf
Restricted to Repository staff only

Download (926kB) | Request a copy
[img] Text
e. BAB 3.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy
[img] Text
f. BAB 4.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy
[img] Text
g. BAB 5.pdf
Restricted to Repository staff only

Download (149kB) | Request a copy
[img] Text
h. DAFTAR PUSTAKA.pdf

Download (378kB)
[img] Text
i. LAMPIRAN.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Di era modern ini, telah banyak kita temui perusahaan komersial yang memasarkan produknya melalui platform sosial media. Bahkan baru ini aplikasi sosial media penyedia video berdurasi pendek atau dikenal dengan TikTok telah menyediakan fitur e-commerce. Tetapi tidak sedikit tanggapan dari masyarakat mengenai kehadiran fitur belanja TikTokShop ini yang diungkapkan melalui media sosial salah satunya twitter. Sehingga penelitian ini menggunakan data twitter dengan pencarian keyword “TikTokShop” yang akan diimplementasikan ke arah sentimen analisis menggunakan algoritma K-Nearest Neighbor dengan metode cosine similarity dalam menghitung jarak tetangga terdekat. Skenario uji yang digunakan menggunakan 10-fold cross validation. Penelitian ini juga menggunakan fitur seleksi N-Gram yaitu unigram, bigram, dan trigram, dan untuk menangani data yang tidak seimbang menggunakan teknik undersampling. Hasil pemodelan didapatkan bahwa penerapan N-Gram terbaik yaitu model seleksi fitur unigram, dengan hasil akurasi nilai tetangga optimal terjadi pada nilai tetangga k=5 hal ini berdasarkan nilai rata-rata akurasi sebesar 89,92%, presisi sebesar 90,54% dan recall sebesar 87,37%. Berdasarkan hasil pengujian data undersampling lebih rendah daripada data sebelum undersampling.

Item Type: Thesis (Undergraduate)
Subjects: 000 Computer Science, Information, & General Works > 004 Data Processing, Computer Science
Divisions: Faculty of Engineering > Department of Informatics Engineering (S1)
Department: S1 Teknik Informatika
Depositing User: RISKA DWI AYU LESTARI
Contributors:
ContributionContributor NameNIDN/NIDK
UNSPECIFIEDRintyarna, Bagus Setya0729017904
UNSPECIFIEDDasuki, Moh0722109103
Contact Email Address: riskadwiayu10@gmail.com
Date Deposited: 24 Jan 2023 01:49
Last Modified: 24 Jan 2023 01:49
URI: http://repository.unmuhjember.ac.id/id/eprint/16095

Actions (login required)

View Item View Item