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1. INTRODUCTION 

The graph theory was first introduced by Leonhard Euler in 1736 with the case of the Konisberg Bridge. The problem that 

arises is known as the Konisberg bridge mystery, namely how to cross the four landmasses by crossing the seven bridges 

exactly once. To analyze the problem of the Konisberg bridge, Euler presents the land as a vertex while the bridge is 

presented as an edge. Euler argued that it was impossible for a person to cross each of the seven bridges exactly once. The 

proof is suspected to be the beginning of the emergence of the concept of graph (Kuziak et al., 2017). One of some topics in 

graph theory that is interesting and developed continuously is metric dimension. The theory of metric dimension was firstly 

proposed by Harary and Melter in 1976. The concept can be utilized to distuingish each vertex in a connected graph G by 

determining its representation with respect to subset of vertex set of G (Saputro et al., 2017). To get some new well known 

graph, some researcher introduced operation of some classes of graphs. Then, metric dimension of corona product graphs 

was been researched by (Yero et al., 2011).  

Another operation is strong product graphs. Fernau H and Rodríguez-Velázquez J investigate the adjacency metric 

dimension of corona and strong product graphs. The results of their research are about the computational and combinatorial 

property. In 2018 González A, Hernando C, and  Mora M make a new definition related to the metric dimension and 

dominating set. They called the concept by Metric-locating-dominating sets. A dominating set of any graph is said to be a 

metric-locating-dominating set if the distance of each elements dominating set to another vertex of the graph is different. 

Another concept development of metric dimension was done by some researcher such as strong metric dimension by (Kuziak 

et al., 2013) and they can compute the metric dimension by the subgraph (Kuziak et al., 2017) and they continue for the 

next year to get the properties of strong resolving graphs (Kuziak et al., 2018). Next, strong metric dimension was modified 

as the fractional strong metric dimension (Kang et al., 2018). 

Another concept that related to metric dimension is star metric dimension which was firstly proposed by Mutia, N., 2015. 

(Mutianingsih et al., 2016). They defined the star metric dimension and determine the star metric dimension of wheel-

similar graph. The order set of 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛} ⊆ 𝑉(𝐺) called star resolving set of connected graph  𝐺 if 𝑍 is Star Graph 

and for every vertex in G has different representation to the set 𝑍. The representation is expressed as the distance 𝑑(𝑢, 𝑧), 
it is the shortest path from vertex 𝑢 to 𝑧 for every 𝑢, 𝑧 ∈ 𝑉(𝐺). Star resolving set with the minimum cardinality is called 
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star basis and its cardinality is called star metric dimension of 𝐺 is 𝑆𝑑𝑖𝑚(𝐺) (Mutia, 2015). 

 

 

 

 

 
Figure 1. Star Graph (𝑺𝟒) with 𝒅𝒊𝒎(𝑺𝟒) = 𝟐 

 

Figure 2 shows a wheel graph (𝑊6) with the vertex set is 𝑉(𝑊6) = {𝑜, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, let the star resolving set is 𝑍 = {𝑜, 𝑎, 𝑏}. 
The representation every vertex of 𝑉(𝑊6) to 𝑍 are: 

 

𝑟(𝑜|𝑍) = {0,1,1} 

𝑟(𝑎|𝑍) = {1,1,1} 

𝑟(𝑏|𝑍) = {1,1,0} 

𝑟(𝑐|𝑍) = {1,2,1} 

𝑟(𝑑|𝑍) = {1,2,2} 

𝑟(𝑒|𝑍) = {1,1,2} 

𝑟(𝑓|𝑍) = {1,0,2} 

 

We can see that every vertex of 𝑉(𝑊6) has different representation to 𝑍, then Z is star resolving set of 𝑊6. Besides the 

Figure 3 show that if we take |𝑍| = 2, and suppose 𝑍 = {𝑜, 𝑓}. Then, there are some vertices have same representation to 𝑍, 

for example 𝑟(𝑎|𝑍) = {1,1} =  𝑟(𝑒|𝑍) = {1,1} . Thus 𝑍 = {𝑜, 𝑓}  is not star resolving set of 𝑊6 . Therefore |𝑍| = 3  is star 

resolving set with minimum cardinality. The formal proof of star metric dimension of wheel graph has been found by (Mutia, 

2015) as presented in Theorem 1. While Theorem 2 describe the star metric dimension of gear graph. 

 
Figure 2. Wheel graph (𝑾𝟔) with star resolving set equals three 

 

Figure 3. Wheel graph (𝑾𝟔) 

Theorem 1. If 𝑊𝑛 is wheel graph with the order 𝑛 + 1 and 𝑛 ≥ 7, then star metric dimension 𝑠𝑑𝑖𝑚(𝑊𝑛) = ⌈
𝑛

2
⌉. (Mutia, 2015) 

Theorem 2. If 𝐺2𝑛is gir graph with the order order 2𝑛 + 1 and 𝑛 ≥ 5, then star metric dimension 𝑠𝑑𝑖𝑚(𝐺2𝑛) = 𝑛. (Mutia, 

2015) 

 

Since the concept of star metric dimension is interesting to be developed because it still can be development with some 

classes of graph. The topic of star metric dimension is interesting. (Saifudin et al., 2021) succeed found the application of 

this topic to real life problem. They determined the aircraft navigation to protect a forest fire area by using the concept of 

star metric dimension. This topic still needed to be developed for any single graph or some products of graphs and some 

characteristic of star metric dimension not submitted yet. Therefore, in this paper we present some of characterization of 

star metric dimension and determine the star metric dimension of some special graph. 
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2. RESEARCH METHOD 

The method which is used in this study are pattern recognition and axiomatic deductive methods. All the procedures are 

given below: 

1) Reviewing the literature related to the concept of graph and star metric dimension. 

2) Observing star metric dimension of some well know graphs. 

3) Determining star metric dimension (𝑆𝑑𝑖𝑚) of graphs based on the procedure below: 

a) Determining the candidates of star local resolving set 𝑍 starting for the smallest cardinality 

b) If 𝑍 is Star Graph and for every vertex in G has different representation to the set 𝑍. The representation is 

expressed as the distance 𝑑(𝑢, 𝑧), it is the shortest path from vertex 𝑢 to 𝑧 for every 𝑢, 𝑧 ∈ 𝑉(𝐺). 
c) Verifying representation of each vertex 𝑢 element 𝐺 to local resolving set 𝑍 starting for the smallest cardinality. 

d) If the representation of each adjacent vertex to 𝑍 is different, then 𝑆𝑑𝑖𝑚(𝐺) = |𝑍|, if it is not, then repeat all steps 

until the biggest cardinality of 𝑍. 

 

3. RESULTS AND DISCUSSION 

The following lemma and theorem shows the new results of star metric dimensions, starting with the characteristics of the 

star metric dimensions, then star metric dimensions on special graphs, i.e. complete, complete bipartite and fan graph: 

Lemma 3.  If 𝐺 be a connected graph, 𝑇 ⊆ 𝑉(𝐺), 𝑇 consist of star resolving set of graph 𝐺 and 𝑇 form a star graph, 

then 𝑇 is star metric dimension of  𝐺. 

Proof. Let 𝑍 = {𝑢𝑖|𝑖 = 1,2,… , 𝑘} ⊆ 𝑉(𝐺) is star resolving set of graph 𝐺 and 𝑇 ⊆ 𝑉(𝐺). Let 𝑍 ⊆ 𝑇, because 𝑍 star resolving 

set, for every 𝑢, 𝑣 ∈ 𝑉(𝐺) then  𝑟(𝑢|𝑍) ≠ 𝑟(𝑣|𝑍) and 𝑟(𝑢|𝑇) ≠ 𝑟(𝑣|𝑇) because 𝑍 ⊆ 𝑇. Next, because 𝑇 form star graph, then 

𝑇 is star resolving set of graph 𝐺.∎ 

Lemma 4. If 𝐺 be a connected graph, 𝑍 ⊆ 𝑉(𝐺) and For every 𝑣𝑖 , 𝑣𝑗 ∈ 𝑍 then 𝑟(𝑣𝑖|𝑍) ≠ 𝑟(𝑣𝑗|𝑍). 

Proof. Let 𝑍 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑘} ⊆ 𝑉(𝐺). Because for every 𝑣𝑖 , 𝑣𝑗 ∈ 𝑍 with 𝑖 ≠ 𝑗  then 𝑑(𝑣𝑖 , 𝑣𝑖) = 0  and 𝑑(𝑣𝑖 , 𝑣𝑗) ≠ 0, then 

there exist 0 of ith element in  𝑟(𝑣𝑖|𝑍) for every 𝑣𝑖 ∈ 𝑍. As a result 𝑟(𝑣𝑖|𝑊𝑙) ≠ 𝑟(𝑣𝑗|𝑊𝑙) for 𝑖 ≠ 𝑗. ∎ 

Theorem 5. If 𝑛 ≥ 3, then 𝑆𝑑𝑖𝑚(𝐾𝑛) = 𝑛 − 1.  

Proof. Let 𝑉(𝐾𝑛) = {𝑣𝑖|𝑖 = 1,2,3, … , 𝑛 } and 𝐸(𝐾𝑛) = {𝑣𝑖𝑣𝑗|𝑖, 𝑗 = 1,2,3, … , 𝑛, 𝑖 ≠ 𝑗} with 𝑛 ≥ 3. Choose 𝑍 = {𝑣𝑖|𝑖 = 1,2,3, … , 𝑛 −

1} then |𝑍| = 𝑛 − 1. See at Lemma 4, we get 𝑟(𝑣𝑖|𝑍) ≠ 𝑟(𝑣𝑗|𝑍) for every 𝑣𝑖 , 𝑣𝑗 ∈ 𝑍 with 𝑖 ≠ 𝑗. Then, because 𝑟(𝑣𝑛|𝑍) =

(1,1,1,1, … ,1⏟      
(𝑛−1)−𝑡𝑢𝑝𝑙𝑒

), so 𝑊 is resolving set of graph 𝐾𝑛. In other side, because for every 𝑣𝑖 ∈ 𝑍 with 𝑖 = 2,3,4, … , 𝑛 − 1 then 𝑣1𝑣𝑖 ∈

𝐸(𝐾𝑛), thus 𝑍 form star graph 𝐾1,𝑛−2 then 𝑍 is star resolving set of graph 𝐾𝑛. Next, because 𝑑𝑖𝑚 (𝐾𝑛) = 𝑛 − 1, it clearly 

that 𝑍 is star metric dimension with minimum cardinality then it can conclude that 𝑆𝑑𝑖𝑚(𝐾𝑛) = 𝑛 − 1. ∎ 

Theorem 6. If 𝑛 ≥ 2, then 𝑆𝑑𝑖𝑚 (𝐾2,𝑛) = 𝑛. 

Proof. Let 𝑉 (𝐾2,𝑛) = {𝑎1, 𝑎2, 𝑏𝑖|𝑖 = 1,2, … , 𝑛} and 𝐸 (𝐾2,𝑛) = {𝑎1𝑏𝑖 , 𝑎2𝑏𝑖  |𝑖 = 1,2,3, … , 𝑛}. Choose 𝑍 = {𝑎1, 𝑏𝑖|𝑖 = 1,2,3, … , 𝑛 − 1} 

then |𝑍| = 𝑛. See at Lemma 4, we have 𝑟 (𝑎1|𝑍) ≠ 𝑟(𝑏𝑖|𝑍) and 𝑟(𝑏𝑗|𝑍) ≠ 𝑟(𝑏𝑘|𝑍) for every 𝑎1, 𝑏𝑖 , 𝑏𝑗 , 𝑏𝑘  ∈ 𝑍 with 𝑗 ≠ 𝑘 . 

Then, because 𝑟 (𝑎2|𝑍) = (2,1,1,1, … ,1⏟      
(𝑛−1)−𝑡𝑢𝑝𝑙𝑒

) and 𝑟(𝑏𝑛|𝑍) = (1, 2,2,2, … ,2⏟      
(𝑛−1)−𝑡𝑢𝑝𝑙𝑒

), thus 𝑍 is resolving set of 𝐾2,𝑛. In other side, because 

for every 𝑏𝑖 ∈ 𝑍 with 𝑖 = 1,2,3, … , 𝑛 − 1 then 𝑎1𝑏𝑖 ∈ 𝐸(𝐾2,𝑛), hence 𝑍 form star graph 𝐾1,𝑛−1 then 𝑍 is star resolving set 

of 𝐾2,𝑛. Next, because 𝑑𝑖𝑚 (𝐾2,𝑛) = 𝑛, it clearly that 𝑍 is star resolving set with minimum cardinality. Therefore we can 

conclude that 𝑆𝑑𝑖𝑚 (𝐾2,𝑛) = 𝑛. ∎ 

Theorem 7. If 𝑚, 𝑛 ≥ 3, then 𝑆𝑑𝑖𝑚 (𝐾𝑚,𝑛) = 0. 

Proof. Let 𝑉(𝐾𝑚,𝑛) = {𝑎𝑖|𝑖 = 1,2,3, … ,𝑚} ∪ { 𝑏𝑗|𝑗 = 1,2, … , 𝑛} and 𝐸(𝐾𝑚,𝑛) = {𝑎𝑖𝑏𝑗|𝑖 = 1,2,3, … ,𝑚 ;  𝑗 = 1,2,3, … , 𝑛} with 𝑚, 𝑛 ≥ 3. 

Since 𝐾𝑚,𝑛 is a complete bipartite graph, then there exist two possibilities for 𝑍: 
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1. Select 𝑍 = {𝑎𝑖|𝑖 = 2,3,4, … ,𝑚} ∪ {𝑏𝑗|𝑗 = 2,3,4, … , 𝑛}, so that |𝑍| = 𝑚 + 𝑛 − 2. Based on Lemma 4, we get that 𝑟(𝑢|𝑍) ≠

𝑟(𝑣|𝑍)  for every 𝑢, 𝑣 ∈ 𝑍  with 𝑢 ≠ 𝑣 . Furthermore, Since 𝑟 (𝑎1|𝑍) = ( 2,2,2, … ,2⏟      
(𝑚−1)−𝑡𝑢𝑝𝑙𝑒

, 1,1,1, … ,1⏟      
(𝑛−1)−𝑡𝑢𝑝𝑙𝑒

)  and 𝑟 (𝑏1|𝑍) =

( 1,1,1, … ,1⏟      
(𝑚−1)−𝑡𝑢𝑝𝑙𝑒

, 2,2,2, … ,2⏟      
(𝑛−1)−𝑡𝑢𝑝𝑙𝑒

), then 𝑊 is resolving set of 𝐾𝑚,𝑛. Furthermore, Since 𝑍 doesn’t form a star, then 𝑍 is not a 

star resolving set of 𝐾𝑚,𝑛. 

2. Select 𝑍 = {𝑎1, 𝑏1} so that |𝑍| = 2. Since 𝑑𝑖𝑚 (𝐾𝑚,𝑛) = 𝑚 + 𝑛 − 2, it clearly shows that 𝑍 is not a resolving set of 𝐾𝑚,𝑛 

so that  𝑍 is not a star resolving set of 𝐾𝑚,𝑛. 

Furthermore, Since 𝑑𝑖𝑚 (𝐾𝑚,𝑛) = 𝑚 + 𝑛 − 2, then 𝑆𝑑𝑖𝑚 (𝐾𝑚,𝑛) ≥ 𝑚 + 𝑛 − 2. On the other hand, Since star subgraph of 𝐾𝑚,𝑛 

only can be obtained by 𝑚+ 1 or 𝑛 + 1 vertices, then 𝑆𝑑𝑖𝑚 (𝐾𝑚,𝑛) ≤ 𝑚 + 1 or 𝑆𝑑𝑖𝑚 (𝐾𝑚,𝑛) ≤ 𝑛 + 1. Contradiction with the 

fact that 𝑆𝑑𝑖𝑚 (𝐾𝑚,𝑛) ≥ 𝑚 + 𝑛 − 2. Consequently, there is no vertex set as star resolving set of 𝐾𝑚,𝑛 so that 𝑆𝑑𝑖𝑚 (𝐾𝑚,𝑛) =

0. ∎ 

Theorem 8. If 2 ≤ 𝑛 ≤ 5, then 𝑆𝑑𝑖𝑚 (𝐹𝑛) = 2. 

Proof. Let 𝑉(𝐹𝑛) = {𝑣, 𝑣𝑖|𝑖 = 1,2, … , 𝑛} and 𝐸(𝐹𝑛) = {𝑣𝑣𝑖|𝑖 = 1,2, … , 𝑛} ∪ {𝑣𝑗𝑣𝑗+1|𝑗 = 1,2, … , 𝑛 − 1}. There are for cases for 𝑛: 

1. For 𝑛 = 2 , select 𝑍 = {𝑣, 𝑣1} so that |𝑍| = 2. Since 𝑟(𝑣|𝑍) = (0,1), 𝑟 (𝑣1|𝑍) = (1,0) and 𝑟 (𝑣2|𝑍) = (1,1), then 𝑍  is a 

resolving set of 𝐹2. While, since 𝑍 forms 𝐾1,1 star, then 𝑍 is a star resolving set of 𝐹2. Next, take any singleton. Let 

𝑇 = {𝑣}, then we get 𝑟 (𝑣1|𝑇) = 𝑟 (𝑣2|𝑇) = (1,1) so that 𝑇 is not a resolving set of 𝐹2. Consequently, 𝑇 is not a resolving 

set of 𝐹2. So that, 𝑍 is star resolving set with minimum cardinality and 𝑆𝑑𝑖𝑚 (𝐹2) = 2. 

2. For 𝑛 = 3 , select 𝑍 = {𝑣1, 𝑣2}  so that |𝑍| = 2 . Since 𝑟(𝑣|𝑍) = (1,1) , 𝑟 (𝑣1|𝑍) = (0,1) , 𝑟 (𝑣2|𝑍) = (1,0)  and 𝑟 (𝑣3|𝑍) =

(2,1), then 𝑍 is a resolving set of 𝐹3. While, since 𝑍 forms a 𝐾1,1, then 𝑍 is star resolving set of 𝐹3. Next, take any 

singleton. There are two possibilities: (i) 𝑣 with deg(𝑣) = 2; or (ii) 𝑣 with deg(𝑣) = 3.  

(i) Let 𝑇 = {𝑣1}, then we get 𝑟(𝑣|𝑇) = 𝑟 (𝑣2|𝑇) = (1) so that 𝑇 is not a resolving set of 𝐹3. Consequently, 𝑇 is not a 

resolving set of 𝐹3.  

(ii) Let 𝑇 = {𝑣}, then we get 𝑟 (𝑣1|𝑇) = 𝑟 (𝑣2|𝑇) = 𝑟 (𝑣3|𝑇) = (1) so that 𝑇 is not a resolving set of 𝐹3. Consequently, 𝑇 

is not a resolving set of 𝐹3.  

So that, 𝑍 is star resolving set with minimum cardinality and 𝑆𝑑𝑖𝑚 (𝐹3) = 2. 

3. For 𝑛 = 4 , select 𝑍 = {𝑣2, 𝑣3} so that |𝑍| = 2. Since 𝑟(𝑣|𝑍) = (1,1), 𝑟 (𝑣1|𝑍) = (1,2), 𝑟 (𝑣2|𝑍) = (0,1), 𝑟 (𝑣3|𝑍) = (1,0) 

and 𝑟 (𝑣4|𝑍) = (2,1), then 𝑍 is a resolving set of 𝐹4. While, since 𝑍 forms a 𝐾1,1, then 𝑍 is star resolving set of 𝐹4. Next, 

take any singleton. There are two possibilities: (i) 𝑣 with deg(𝑣) = 2; or (ii) 𝑣 with deg(𝑣) = 3.  

(i) Let 𝑇 = {𝑣1}, then we get 𝑟(𝑣|𝑇) = 𝑟 (𝑣2|𝑇) = (1) so that 𝑇 is not a resolving set of 𝐹4. Consequently, 𝑇 is not a 

resolving set of 𝐹4.  
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(ii) Let 𝑇 = {𝑣} , then we get 𝑟 (𝑣1|𝑇) = 𝑟 (𝑣2|𝑇) = 𝑟 (𝑣3|𝑇) = 𝑟 (𝑣4|𝑇) = (1)  so that 𝑇  is not a resolving set of 𝐹4 . 

Consequently, 𝑇 is not a resolving set of 𝐹3.  

So that, 𝑍 is a star resolving set with minimum cardinality and 𝑆𝑑𝑖𝑚 (𝐹4) = 2. 

4. For 𝑛 = 5, select 𝑍 = {𝑣2, 𝑣3} so that |𝑍| = 2. Since 𝑟(𝑣|𝑍) = (1,1), 𝑟 (𝑣1|𝑍) = (1,2), 𝑟 (𝑣2|𝑍) = (0,1), 𝑟 (𝑣3|𝑍) = (1,0), 

𝑟 (𝑣4|𝑍) = (2,1) and 𝑟 (𝑣5|𝑍) = (2,2), then 𝑍 is a resolving set of 𝐹5. On the other hand, Since 𝑍 forms a 𝐾1,1, then 𝑍 

is a star resolving set of 𝐹5. Furthermore, take any singleton. There are two possibilities: (i) 𝑣 with deg(𝑣) = 2; or (ii) 𝑣 

with deg(𝑣) = 3.  

(i) Let 𝑇 = {𝑣1}, then we get 𝑟(𝑣|𝑇) = 𝑟 (𝑣2|𝑇) = (1) so that 𝑇 is not a resolving set of 𝐹5. Consequently, 𝑇 is not a 

resolving set of 𝐹5.  

(ii) Let 𝑇 = {𝑣}, then we get 𝑟 (𝑣1|𝑇) = 𝑟 (𝑣2|𝑇) = 𝑟 (𝑣3|𝑇) = 𝑟 (𝑣4|𝑇) = 𝑟 (𝑣5|𝑇) = (1) so that 𝑇 is not a resolving set of 

𝐹5. Consequently, 𝑇 is not a resolving set of 𝐹5.  

So that, 𝑍 is a star resolving set with minimum cardinality and 𝑆𝑑𝑖𝑚 (𝐹5) = 2. 

From the four possibilities above, we get that for 𝑛 = 2,3,4,5, 𝑆𝑑𝑖𝑚(𝐹𝑛) = 2. ∎ 

Theorem 9. If 𝑛 ≥ 6, then 𝑆𝑑𝑖𝑚 (𝐹𝑛) = ⌈
2𝑛+3

5
⌉. 

Proof. Let 𝑉(𝐹𝑛) = {𝑣, 𝑣𝑖|𝑖 = 1,2, … , 𝑛} and 𝐸(𝐹𝑛) = {𝑣𝑣𝑖|𝑖 = 1,2, … , 𝑛} ∪ {𝑣𝑗𝑣𝑗+1|𝑗 = 1,2, … , 𝑛 − 1}. There are three cases for 𝑛: 

1. For 𝑛 ≡ 1 (𝑚𝑜𝑑 5)  or 𝑛 ≡ 3 (𝑚𝑜𝑑 5) , select 𝑍 = {𝑣, 𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−2}  so that |𝑍| = ⌈
2𝑛+3

5
⌉ . Based on 

Lemma 4, we get that 𝑟(𝑢|𝑍) ≠ 𝑟(𝑣|𝑍) for every 𝑢, 𝑣 ∈ 𝑍 with 𝑢 ≠ 𝑣. Furthermore, Since for every 𝑣𝑖 ∈ 𝑉(𝐹𝑛) we get: 

𝑟(𝑣𝑖|𝑍) =

{
 
 
 
 
 
 

 
 
 
 
 
 

(

 1,2,2,2,… ,2, 1⏟

(
𝑖
3
+1)

𝑡ℎ

, 2,2,2, … ,2

)

 , 𝑖 ≡ 0 (𝑚𝑜𝑑 5)

(

 1,2,2,2,… ,2, 1⏟

(⌈
𝑖
2
⌉−⌊

𝑖
10
⌋+1)

𝑡ℎ

, 2,2,2, … ,2

)

 ,  𝑖 ≡ 1 (𝑚𝑜𝑑 5)

(

 1,2,2,2,… ,2, 1⏟

(⌈
𝑖
3
⌉+⌊

𝑖
15
⌋+1)

𝑡ℎ

, 1⏟

(⌈
𝑖
3
⌉+⌊

𝑖
15
⌋+2)

𝑡ℎ

, 2,2,2, … ,2

)

 ,  𝑖 ≡ 3 (𝑚𝑜𝑑 5)

 

So that, 𝑍 is a resolving set of 𝐹𝑛. Furthermore, Since for every 𝑣5𝑖−3, 𝑣5𝑖−1 ∈ 𝑍 we get 𝑣𝑣5𝑖−3 ∈ 𝐸(𝐹𝑛) and 𝑣𝑣5𝑖−1 ∈

𝐸(𝐹𝑛), then 𝑍 forms a 𝐾
1,⌈

2𝑛+3

5
⌉−1

 so that 𝑍 is a star resolving set of 𝐹𝑛. Furthermore, take any 𝑇 ⊆ 𝑉(𝐹𝑛) with |𝑇| < |𝑍|, 

|𝑇| = |𝑍| − 1. Then there are two cases for 𝑇: 

(i) 𝑇 doesn’t consist 𝑣. Let 𝑇 = {𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−2}. Then 𝑇 doesn’t form a star. 

(ii) 𝑇 consists 𝑣. Let 𝑇 = {𝑣, 𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−7}. There exist 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛 ∈ 𝑉(𝐹𝑛) − 𝑇, so that 𝑟(𝑣𝑛−2|𝑇) =

𝑟(𝑣𝑛−1|𝑇) = 𝑟(𝑣𝑛|𝑇) = (2,2,2,… ,2). Consequently, 𝑇 is not a resolving set of 𝐹𝑛. 

So that, there is no star resolving set with cardinality less then |𝑍| so that 𝑍 is a star resolving set with minimum 

cardinality and 𝑆𝑑𝑖𝑚 (𝐹𝑛) = ⌈
2𝑛+3

5
⌉ For 𝑛 ≡ 1 (𝑚𝑜𝑑 5) or 𝑛 ≡ 3 (𝑚𝑜𝑑 5). 



Umilasari et al                                         International Journal of Trends in Mathematics Education Research, Vol. 5, No. 2 (2022), pp. 199-205 

 

204 

 

2. For 𝑛 ≡ 2 (𝑚𝑜𝑑 5)  or 𝑛 ≡ 4 (𝑚𝑜𝑑 5) , select 𝑍 = {𝑣, 𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛}  so that |𝑍| = ⌈
2𝑛+3

5
⌉ . Based on 

Lemma 4, we get that 𝑟(𝑢|𝑍) ≠ 𝑟(𝑣|𝑍) for every 𝑢, 𝑣 ∈ 𝑍 with 𝑢 ≠ 𝑣. Furthermore, Since for every 𝑣𝑖 ∈ 𝑉(𝐹𝑛) we get: 

𝑟(𝑣𝑖|𝑍) =

{
 
 
 
 
 
 

 
 
 
 
 
 

(

 1,2,2,2,… ,2, 1⏟

(
𝑖
3
+1)

𝑡ℎ

, 2,2,2, … ,2

)

 , 𝑖 ≡ 0 (𝑚𝑜𝑑 5)

(

 1,2,2,2,… ,2, 1⏟

(⌈
𝑖
2
⌉−⌊

𝑖
10
⌋+1)

𝑡ℎ

, 2,2,2, … ,2

)

 ,  𝑖 ≡ 1 (𝑚𝑜𝑑 5)

(

 1,2,2,2,… ,2, 1⏟

(⌈
𝑖
3
⌉+⌊

𝑖
15
⌋+1)

𝑡ℎ

, 1⏟

(⌈
𝑖
3
⌉+⌊

𝑖
15
⌋+2)

𝑡ℎ

, 2,2,2, … ,2

)

 ,  𝑖 ≡ 3 (𝑚𝑜𝑑 5)

 

So that, 𝑍 is a resolving set of 𝐹𝑛. Furthermore, Since for every 𝑣5𝑖−3, 𝑣5𝑖−1 ∈ 𝑍 we get 𝑣𝑣5𝑖−3 ∈ 𝐸(𝐹𝑛) and 𝑣𝑣5𝑖−1 ∈

𝐸(𝐹𝑛), then 𝑍 forms a 𝐾
1,⌈

2𝑛+3

5
⌉−1

 so that 𝑍 is a star resolving set of 𝐹𝑛. Furthermore, take any 𝑇 ⊆ 𝑉(𝐹𝑛) with |𝑇| < |𝑍|, 

|𝑇| = |𝑍| − 1. Then there are two cases for 𝑇: 

(i) 𝑇 doesn’t consist 𝑣. Let 𝑇 = {𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛}. Then 𝑇 doesn’t form a star. 

(ii) 𝑇  consists 𝑣 . Let 𝑇 = {𝑣, 𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−5}.  There exists 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛 ∈ 𝑉(𝐹𝑛) − 𝑇 , so that 

𝑟(𝑣𝑛−2|𝑇) = 𝑟(𝑣𝑛−1|𝑇) = 𝑟(𝑣𝑛|𝑇) = (2,2,2,… ,2). Consequently, 𝑇 is not a resolving set of 𝐹𝑛. 

So that, there is no star resolving set with cardinality less then |𝑍| so that 𝑍 is a star resolving set with minimum 

cardinality and 𝑆𝑑𝑖𝑚 (𝐹𝑛) = ⌈
2𝑛+3

5
⌉ For 𝑛 ≡ 2 (𝑚𝑜𝑑 5) or 𝑛 ≡ 4 (𝑚𝑜𝑑 5). 

3. For 𝑛 ≡ 0 (𝑚𝑜𝑑 5), select 𝑍 = {𝑣, 𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−1} so that |𝑍| = ⌈
2𝑛+3

5
⌉. Based on Lemma 4, we get that 

𝑟(𝑢|𝑍) ≠ 𝑟(𝑣|𝑍) for every 𝑢, 𝑣 ∈ 𝑍 with 𝑢 ≠ 𝑣. Furthermore, Since for every 𝑣𝑖 ∈ 𝑉(𝐹𝑛) we get: 

𝑟(𝑣𝑖|𝑍) =

{
 
 
 
 
 
 

 
 
 
 
 
 

(

 1,2,2,2,… ,2, 1⏟

(
𝑖
3
+1)

𝑡ℎ

, 2,2,2, … ,2

)

 , 𝑖 ≡ 0 (𝑚𝑜𝑑 5)

(

 1,2,2,2,… ,2, 1⏟

(⌈
𝑖
2
⌉−⌊

𝑖
10
⌋+1)

𝑡ℎ

, 2,2,2, … ,2

)

 ,  𝑖 ≡ 1 (𝑚𝑜𝑑 5)

(

 1,2,2,2,… ,2, 1⏟

(⌈
𝑖
3
⌉+⌊

𝑖
15
⌋+1)

𝑡ℎ

, 1⏟

(⌈
𝑖
3
⌉+⌊

𝑖
15
⌋+2)

𝑡ℎ

, 2,2,2, … ,2

)

 ,  𝑖 ≡ 3 (𝑚𝑜𝑑 5)

 

So that, 𝑍 is a resolving set of 𝐹𝑛. Furthermore, Since for every 𝑣5𝑖−3, 𝑣5𝑖−1 ∈ 𝑍 we get 𝑣𝑣5𝑖−3 ∈ 𝐸(𝐹𝑛) and 𝑣𝑣5𝑖−1 ∈

𝐸(𝐹𝑛), then 𝑍 forms a 𝐾
1,⌈

2𝑛+3

5
⌉−1

 so that 𝑍 is a star resolving set of 𝐹𝑛. Furthermore, take any 𝑇 ⊆ 𝑉(𝐹𝑛) with |𝑇| < |𝑍|, 

|𝑇| = |𝑍| − 1. Then there are two cases for 𝑇: 

(iii) 𝑇 doesn’t consist 𝑣. Let 𝑇 = {𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−1}. Then 𝑇 doesn’t form a star. 

(iv) 𝑇  consist 𝑣 . Let 𝑇 = {𝑣, 𝑣2, 𝑣4, 𝑣7, 𝑣9, … , 𝑣5𝑖−3, 𝑣5𝑖−1, … , 𝑣𝑛−6}.  There exists 𝑣𝑛−2, 𝑣𝑛−1, 𝑣𝑛 ∈ 𝑉(𝐹𝑛) − 𝑇 , so that 

𝑟(𝑣𝑛−2|𝑇) = 𝑟(𝑣𝑛−1|𝑇) = 𝑟(𝑣𝑛|𝑇) = (2,2,2,… ,2). Consequently, 𝑇 is not a resolving set of 𝐹𝑛. 

So that, there is no star resolving set with cardinality less then |𝑍| so that 𝑍 is a star resolving set with minimum 

cardinality and 𝑆𝑑𝑖𝑚 (𝐹𝑛) = ⌈
2𝑛+3

5
⌉ For 𝑛 ≡ 0 (𝑚𝑜𝑑 5) or 𝑛 ≡ 3 (𝑚𝑜𝑑 5). 
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Based on three cases above, we get that for 𝑛 ≥ 6 we get 𝑆𝑑𝑖𝑚(𝐹𝑛) = ⌈
2𝑛+3

5
⌉. ∎ 

4. CONCLUSION 

Based on the all the explanations above, we can conclude that complete graph has  𝑺𝒅𝒊𝒎(𝑲𝒏) = 𝒏 − 𝟏, for 𝒏 ≥ 𝟑, bipartite 

graph 𝑲𝟐,𝒏 has  𝑺𝒅𝒊𝒎 (𝑲𝟐,𝒏) = 𝒏, for 𝒏 ≥ 𝟑. Besides complete bipartite graph hasn’t star metric dimension or  for 𝒎,𝒏 ≥

𝟑 or it can said that  𝑺𝒅𝒊𝒎 (𝑲𝒎,𝒏) = 𝟎. Another graph, that is Fan graph has 𝑺𝒅𝒊𝒎 (𝑭𝒏) = 𝟐 for 𝟐 ≤ 𝒏 ≤ 𝟓 and for ≥ 𝟔 

𝑺𝒅𝒊𝒎 (𝑭𝒏) = ⌈
𝟐𝒏+𝟑

𝟓
⌉. We also give some an issue regarding the topic of star metric dimension for another researcher as follows. 

If given a connected graph 𝑮 with the order equals 𝒏 vertex, determine star metric dimension of some product of graphs.  
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