PAPER NAME
paper publish IAENG.pdf

WORD COUNT
6284 Words

PAGE COUNT
7 Pages

SUBMISSION DATE
Jan 24, 2023 12:15 PM GMT+7

CHARACTER COUNT
24663 Characters

FILE SIZE
1.2MB

REPORT DATE
Jan 24, 2023 12:16 PM GMT+7

## 19\% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 12\% Internet database
- Crossref database
- $14 \%$ Submitted Works database


## Excluded from Similarity Report

- Bibliographic material
- Cited material
- 10\% Publications database
- Crossref Posted Content database
- Quoted material
- Small Matches (Less then 10 words)


# On the Dominant Local Metric Dimension of Corona Product Graphs 

Reni Umilasari, Liliek Susilowati*, Slamin and Savari Prabhu


#### Abstract

A nontrivial connected graph $T$ which one of the vertex is $v, v$ is said to distinguish two vertex $u, t$ if the distance between $v$ and $u$ is different from $v$ to $t$, where $u, t \in V(T)$. Metric dimension is one topic in graph theory that uses the concept of distance. Combining the definition of the local metric dimension and dominating set, there is a new term, we called it dominant local metric dimension and symbolized as ${ }_{5} \operatorname{dim}_{l}(T)$. An ordered subset $W_{l}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq V(T) \subseteq$ called a dominant local resolving set of $T$ if $W_{l}$ is a local resolving set as well as a dominating set of $T$. The goal of this paper's research is to determine precise values of dominant local metric dimension for the corona product graphs. $n$ copies of the graphs $P_{1}, P_{2}, \ldots, P_{n}$ of $P$ are made to constructed the corona of any two graph $T$ and $P$. After that, we link the $i$-th vertex of $T$ to the vertices of $P_{i}$, where $n$ is an order of graph $T . T$ corona $P$ is symbolized by $T \odot P$.


Index Terms-dominating set, metric dimension, local resolving set, local metric dimension.

## I. Introduction

GRAPH theory is one of the theory in mathematics. In general, a graph can be described as a non-empty set with members referred to as vertices and an empty set with elements referred to as edges, which are an unord ${ }_{22}$ d pair of two different vertices. If an edge connects two ${ }^{22}$ ertices in a graph, they are said to be neighbors. The number of graph theory research topics keeps expanding. Dominating set and dominating number, graph coloring, graph labeling, and metric dimension are a few of the issues that have grown in popularity in the field of graph theory.

As early as 1850, the dominating set and dominating number were invented. Since European chess players are obsessed with finding solutions to the "dominating" problem queens, this hypothesis first emerged. On that game, the number of queens is determined by the "dominating set," which allows each queen to attack or dominate every position with a single move. In graph theory, queens are represented as vertices, and the paths queens take to travel between the chessboard's boxes are referred to as edges. Early in the 1960s, dominating set was introduced as formal theory. After that it was extensive use of both the dominating set and the dominating number. In a variety of applications, such as figuring out where to put how many cameras position of the

[^0]supervisor in a building's hallway as well as the quantity of traffic police officers stationed at city corners to ensure that every street can be thoroughly monitored. Dominating set of a graph $H$ usually symbolized as $S$. In formal definition, it is a subset of $V(H)$ which connected all vertices $V(H) \backslash S$ to $S$. We can write that if $j$ is any vertex of $V(H) \backslash S$ then $d(j, x)=1$, where $x \in S$. Minimum number of $j$ is called the dominating number of graph $H$ and symbolized $\gamma(H)$. As a result, the dominating set and the dominant number are tightly related.
Some researchers can develop the topics in real life like the benefit of metric dimension in real life, one of them is written by Khuller, et al., which was inspired by the movement of robots in two-dimensional Euclid space ( $R^{2}$ ), Khuller, et al. attempted to relate the metric dimension concept to the navigation of a robot, they refer to a motion field as a graph. The vertex in the graph is the place where the robot stops or does activities, while the edges are the paths where the robot walks [1]. Another application of this topic in the graph is dominating set which can be used to determine the placement of ATM in some locations [2]. Several researchers have studied and developed metric dimensions in the last decades. They developed the concept of metric dimensions. For example, the fractional metric dimension [3] and also the characterization written by Arumugam and Varughese [4], and a few writers combined the combination of the notions of group in algebra and metric dimension, such as research conducted by Bazak which focuses on finding the Zero-Divisor Graph for the Ring Zn [5]. We refer to [6], [7], [8], and [9] for more information related to metric dimension and local metric dimension.
Some research in dominating set and metric dimensions conducted by Foucaud, et al. generated the formulas and metric dimension complexity and location domination on intervals and permutations graphs [10], and Susilowati, et al. figured out the dominant metric dimension of some specific graphs [11]. Then, the dominant local metric dir ${ }_{5}$ nsion is formulatted by Umilasari, et al. They mention if $W \sim^{5}$ a local resolving set and a dominating set of $T$, then it is referred to as a dominant local resolving set, where $T$ is connected graph and an ordered set $W_{l}=w_{1}, w_{2}, \ldots, w_{n} V(T)$. The dominant local basis is the dominant local resolving set with the smallest cardinality. The dominant local metric dimension, also known as the number of vertices in the dominant local basis of $G$, is denoted by $\operatorname{Dim}_{l}(G)$ [12]. Certain characteristics of the dominant local resolving set, lower and upper bound of the dominant local metric dimension, and the major finding of the paper give some exact value of the dominant local metric dimension for certain classes of graphs. In this paper, $7^{\text {ye }}$ look deeper into the concept by observing the value or me dominant local metric dimension of product graphs, especially in corona product of graphs.
$n$ copies of the graphs $P_{1}, P_{2}, \ldots, P_{n}$ of $P$ are made to constructed the corona of any two graph $T$ and $P$. After that, we link the $i$-th vertex of $T$ to the vertices of $P_{i}$, where $n$ is an order of graph $T . T$ corona $P$ is symbolized by $T \odot P$ [13]. Throughout this part, we speak of $P_{i}$ as an $i$-th copy of $P$ connected to $i$-th vertex of $P$ in $T \odot P$ for every $i \in 1,2, \ldots, n$. Before presenting the main result of this research, we give some theorems about $\gamma(T)$ and $\operatorname{dim}(T)$
Theorem 1.1[14] The dominating number of some graphs are given below:
a. Let $T=P_{m}$ or $R=C_{n}$ with $m \geq 2$ and $n \geq 3$, then $\gamma(T)=\left\lceil\frac{|\underline{W}(G)|}{3}\right\rceil$
b. Let $T=K_{m}$ or $T=K_{1, n-1}$. If $m, \geq 1, n \geq 2 \rightarrow$ $\gamma(T)=1$.
c. Let $T=K_{m, n}$ with $m, n \geq 3$, then $\gamma(T)=2$.

Theorem 1.2 [15] Let $H$ be a nontrivial connected graph with $|V(H)|=n$.

- $\operatorname{dim}_{l}(H)=n-1 \Leftrightarrow H=K_{n}$
- $\operatorname{dim}_{l}(H)=n \Leftrightarrow H$ is bipartite


## II. THE CHARACTERISTIC OF $\operatorname{Dim}_{l}(G)$ AND THE EXCAT VALUE FOR SPECIAL GRAPHS

This section shows some results relating to the characteristic of the local resolving set and $\operatorname{Ddim}_{l}$ of some graphs in which results have been presented by Umilasari et al. [16].
Lemma 2.1 Gign a connected graph $H$. If there is $S \subseteq$ $V(H)$, then for every set $H$ containing a local resolving set is a local resolving set.
Lemma 2.2 Given a connected graph $H$. If there is $W_{l} \subseteq$ $V(H), \forall v_{i}, v_{j} \in W_{l} \Rightarrow r\left(v_{i} \mid W_{l}\right) \neq r\left(v_{j} \mid W_{l}\right)$.
Lemma 2.3 Given a connected graph $H$ with the order $j$, then $\max \left\{\gamma(H), \operatorname{dim}_{l}(H)\right\} \leq \operatorname{Dim}_{l}(H) \leq \min \{\gamma(H)+$ $\left.\operatorname{dim}_{l}(H), j-1\right\}$.

## Theorem 2.4

a. If $k \geq 2$, then $\operatorname{Ddim}_{l}\left(P_{k}\right)=\gamma\left(P_{k}\right)$.
b. If $k \geq 4$, then $\operatorname{Ddim}_{l}\left(C_{k}\right)=\gamma\left(C_{k}\right)$.
c. $\operatorname{Ddim}_{l}(H)=1 \Leftrightarrow H \cong S_{k}$.
d. $\operatorname{Dim}_{l}(H)=k-1 \Leftrightarrow H \cong K_{j}, j \geq 2$.
e. If $p \geq 2, q \geq 2$, then $\operatorname{Dim}_{l}\left(K_{p, q}\right)=\gamma\left(K_{p, q}\right)$.

## III. MAIN RESULT

This section presents the value of $\operatorname{Dim}_{l}(G \odot H)$ where $G$ is any graphs and $H$ is special graph. First of all, we show a Lemma as the property of a local resolving set, then we describe the proof of $\operatorname{Dim}_{l}\left(G \odot P_{m}\right), D \operatorname{dim}_{l}(G \odot$ $\left.C_{n}\right), \operatorname{Dim}_{l}\left(G \odot K_{n}\right), \operatorname{Dim}_{l}\left(G \odot S_{n}\right)$ and $\operatorname{Dim}_{l}(G \odot$ $K_{m, n}$ ).
Lemma 3.1 Given a connected graph $G$. If there is no local dominant resolving set with cardinality $p$, then $\forall S \subseteq V(G)$ and $|S|<p$ is not a local dominant resolving set.
Proof Suppose that there is $S \subseteq V(G)$ with $|S|<p$ as a local dominant resolving set, so for every $u v \in E(G)$ we get $r(u \mid S) \neq r(v \mid S)$. Then, we car - nd a set $T \subseteq V(G)-S$, in case $|S \cup T|=p$, such that $S \cup 1^{3}$ a local dominant resolving set too. Consequently, there is a contradiction between the first and the final statement.
The next lemma shows that $\operatorname{Dim}_{l}\left(K_{1}+P_{n}\right)$ has relation with the $D r_{3} n_{l}\left(P_{n}\right)$.
Lemma 3.2 if $P_{n}$ is a path graph, with $\left|V\left(P_{n}\right)\right|=n \geq 5$, then

$$
\operatorname{Dim}_{l}\left(K_{1}+P_{n}\right)=\operatorname{Dim}_{l}\left(P_{n}\right)
$$

Proof. Let $V\left(K_{1}\right)=\{u\}$ and ${ }^{8}\left(P_{n}\right)=\left\{v_{i} \mid 1 \leq i \leq n\right\}$ with $E\left(P_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$. We give labels of $K_{1}+P_{n}$ is $V\left(K_{1}+P_{n}\right)=\left\{u, v_{i} \mid 1 \leq i_{20} n\right\}$, while for the edge we write $E\left(K_{1}+P_{n}\right)=\left\{u v_{i}, 1 \leq i \leq n\right\}$ $\cup\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$. Based on Theorem 2.4, we know that $\operatorname{Ddim}_{l}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. To determine $\operatorname{Dim}_{l}\left(K_{1}+P_{n}\right)$, it divides into two cases as follows.
a. $n \equiv 0(\bmod 3)$

Put $W_{l}=\left\{v_{2}, v_{5}, v_{8}, v_{11}, \ldots, v_{3 i-1}\right\}$ so that $\left|W_{l}\right|=$ $\left\lceil\frac{n}{3}\right\rceil=\operatorname{Dim}_{l}\left(P_{n}\right)$. Based on Lemma $2.2 \forall v_{i}, v_{j} \in W_{l}$ we get $r\left(v_{i} \mid W_{l}\right) \neq r\left(v_{j} \mid W_{l}\right)$ with $i \neq j$. Since $\forall u, v_{i} \in$ $V\left(K_{1}+P_{n}\right) \backslash W_{l}$ we have gotten:

$$
r\left(u \mid W_{l}\right)=(\underbrace{1,1,1, \ldots, 1}_{\left\lceil\frac{n}{3}\right\rceil \text {-tuple }})
$$

$$
r\left(v_{i} \mid W_{l}\right)=\left\{\begin{array}{l}
(1,2,2,2, \ldots, 2,2,2) \\
\text { for } i=1,3 \\
(2,2,2, \underbrace{1}, 2,2, \ldots, 2,2,2) \\
\text { for } i \equiv 0,1(\bmod 3), 3<i<n-2 \\
(2,2,2, \ldots, 2,2,2,1) \\
\text { for } i=n-2, n
\end{array}\right.
$$

Furthermore, every two adjacent vertices have different ${ }_{4}$ epresentations toward $W_{l}$. Since $P_{n}$ is a path with $\left(P_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$, then every $v_{3 i-1}$ is adjacent to $v_{3 i-2}$ and $v_{3 i}$ is adjacent to $v_{3(i+1)-2}$. Beside that, ${ }_{2}$ is adjacent to every vertex in $W_{l}$. Therefore, $W_{l}{ }^{2}$ is a local dominant resolving set with lowest cardinality. Choose any $S \subseteq V\left(K_{1}+P_{n}\right)$ with $|S|<\left|W_{l}\right|,|S|=\left|W_{l}\right|-1$. Then it will be shown 2 cases for $S$.
i. $S$ does not contain $u$, then $S \subseteq V\left(P_{n}\right)$. Based on Theorem 1.1, $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. Since $S<\left\lceil\frac{n}{3}\right\rceil$, then $S$ is not a dominating set of $K_{1}+P_{n}$.
ii. $S$ contains $u$, then the vertex set of $P_{n}$ which are also the elements of $S$ consist of $\left\lceil\frac{n}{3}\right\rceil-$ 2 elements. Hence, there exists $v_{f}, v_{f+5} \in$ $S$, and $v_{f+1}, v_{f+2}, v_{f+3}, v_{f+4} \notin S$. Therefore, $r\left(v_{f+2} \mid S\right)=r\left(v_{f+3} \mid S\right)$. Consequently, $S$ is not a local resolving set of $K_{1}+P_{n}$.
Considering the two scenarios described above, $s^{2}$ s not a local dominant resolving set of $K_{1}+P_{n}$. By Lemma 3.1, it means $W_{l}$ is a local dominant basis of $K_{1}+P_{n}$ for $n \equiv 0(\bmod 3)$.
b. $n \not \approx 0(\bmod 3)$

Put $W_{l}=\left\{v_{2}, v_{5}, v_{8}, v_{11}, \ldots, v_{3 i-1}\right\}$ so that $\left|W_{l}\right|=$ $\left\lceil\frac{n}{3}\right\rceil=\operatorname{Dim}_{l}\left(P_{n}\right)$. Based on Lemma $2.2 \forall v_{i}, v_{j} \in W_{l}$ we get are $r\left(v_{i} \mid W_{l}\right) \neq r\left(v_{j} \mid W_{l}\right)$ with $i \neq j$. Then, $\forall u, v_{i} \in V\left(K_{1}+P_{n}\right)$ we get:

$$
r\left(u \mid W_{l}\right)=(\underbrace{1,1,1, \ldots, 1}_{\left\lceil\frac{n}{3}\right\rceil-\text { tuple }})
$$



Fig. 1. $K_{1}+P_{6}$ has dominant local metric dimension equals two.

$$
r\left(v_{i} \mid W_{l}\right)=\left\{\begin{array}{l}
(1,2,2,2, \ldots, 2,2,2) \\
\text { for } i=1,3 \\
(2,2,2, \underbrace{1}, 2,2, \ldots, 2,2,2), \\
\text { for } i \equiv 1,2(\bmod 3), 3<i<n-2 \\
(2,2,2, \ldots, 2,2,2,1) \\
\text { for } i \equiv 2(\bmod 3), i=n-1 \\
(2,2,2, \ldots, 2,2,1,1) \\
\text { for } i \equiv 1(\bmod 3), i=n-1
\end{array}\right.
$$

Furthermore, every two adjacent vertices have different representations toward $W_{l}$. Since $P_{n}$ is a path graph with- $\mathcal{L}\left(P_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$, then every $v_{3 i-1}$ is adjacent ${ }_{24} v_{3 i-2}$ and $v_{3 i}$ is adjacent to $v_{3(i+1)-2}$. Beside that, $u_{1}{ }_{s} \mathrm{~s}$ adjacent to every vertex in $W_{l}$. Therefore, $W_{l}$ is a dominating set of $K_{1}+P_{n}$. Thus, $W_{l}$ a local dominant resolving set with lowest cardinality. Take any $S \subseteq V\left(K_{1}+P_{n}\right)$ with $|S|<\left|W_{l}\right|,|S|=\left|W_{l}\right|-1$. Then there are two cases for $S$.
i. $S$ does not contain $u$, then $S \subseteq V\left(P_{n}\right)$. Based on Theorem 1.1, $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$. Since $S<\left\lceil\frac{n}{3}\right\rceil$, then $S$ is not a dominating set of $K_{1}+P_{n}$.
ii. $S$ contains $u$, then the vertex set of $P_{n}$ which are also the elements of $S$ consist of $\left\lceil\frac{n}{3}\right\rceil-$ 2 elements. Hence, there exists $v_{f}, v_{f+5} \in$ $S$, a ${ }_{2} v_{f+1}, v_{f+2}, v_{f+3}, v_{f+4} \notin S$. Therefore, $r\left(v_{f+2} \mid S\right)=r\left(v_{f+3} \mid S\right)$. Consequently, $S$ is not a local resolving set of $K_{1}+P_{n}$.
Considering the two scenarios described above,, ${ }^{2} 4$ not a local dominant resolving set of $K_{1}+P_{n}$. By Lemma 3.1, it can be said that $W_{l}$ is a local dominant basis of $K_{1}+P_{n}, n \nsupseteq 0(\bmod 3)$.
From the 2 conditions above, it has been proven that $W_{l}=$ $\left\lceil\frac{n}{3}\right\rceil=\operatorname{Dim}_{l}\left(P_{n}\right)$ is a local dominant basis of $K_{1}+P_{n}$, for $n \geq 5$. Then, it can be concluded that $\operatorname{Dim}_{l}\left(K_{1}+P_{n}\right)=$ $\operatorname{Dim}_{l}\left(P_{n}\right)$ for $n \geq 5$.
Figure 1 shows that the bigger vertices form the dominant local basis of $K_{1}+P_{6}$. Next, the $D \operatorname{dim}_{l}$ of a connected graph operated by corona product to path graph is presented below.
Theorem 3.3 Given a connected graph $G,|V(G)|=m \geq$ 2.1 $P_{n}$ is a path, with $n \geq 4$, then

$$
\operatorname{Ddim}_{l}\left(G \odot P_{n}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(P_{n}\right)
$$

Proof. ${ }^{6}$. $\mathrm{Ct} V(G)=\left\{u_{i} \mid 1 \leq i \leq m\right\}, V\left(P_{n}\right)=\left\{v_{j} \mid 1 \leq\right.$ $j \leq n\}$ and $E\left(P_{n}\right)=\left\{v_{j} v_{j+1} \mid 1 \leq j \leq n-1\right\}$. The $i$-th copy of $P_{n}$ with $1 \leq i \leq m$ is called $\left(P_{n}\right)_{i}$ with $V\left(\left(P_{n}\right)_{i}\right)=\left\{v_{i j} \mid 1 \leq j \leq n\right\}$. 18 ye give the vertex label of $G \odot P_{n}$ is $V\left(G \odot P_{n}\right)=\left\{v_{0 i \downarrow} \leq i \leq m, u_{i} \in V(G)\right\}$
$\cup\left\{v_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n, v_{i} \in V\left(P_{n}\right)\right\}$, and $E(G \odot$ $\left.P_{n}\right)=\left\{v_{0 i} v_{0 j} \mid u_{i} u_{j} \in E\left(P_{m}\right)\right\} \cup\left\{v_{i j} v_{i(j+1)} \mid v_{j} v_{(j+1)} \in\right.$ $\left.E\left(P_{n}\right)\right\} \cup\left\{v_{0 i} v_{i j} \mid u_{i} \in V(G), v_{j} \in V\left(P_{n}\right)\right\}$. To show the $\operatorname{Ddim}_{l}\left(P_{n}\right)$, we divided the number of $n$ into 2 cases.

1. For $n=4$

We can demonstrate that $B_{i}=\left\{v_{i 2}, v_{i 3}\right\}$ is a dominant local resolving set of $K_{1}+\left(P_{4}\right)_{i} . \forall 1 \leq i \leq m,\left|B_{i}\right|=$ $|B|=2$. Choose $W_{l}=\cup_{i=1}^{m} B_{i}$ so $\left|W_{l}\right|=|V(G)| \times 2$. Without remove of generality, it can be observed that the representation of every vertex $V\left(P_{4}\right)_{i} \backslash B_{i}$ to $B_{i}$ is different.

$$
\begin{aligned}
& r\left(v_{i 1} \mid B i\right)=(1,2) \\
& r\left(v_{i 4} \mid B i\right)=(2,1) \\
& r\left(v_{0 i} \mid B i\right)=(1,1)
\end{aligned}
$$

Because every two adjacent vertices in $V\left(P_{4}\right)_{i}$ have a distinct representation with regard to $B_{i}$ then it is established that $B_{i}$ is a local resolving se ${ }_{23}$ of $\left(P_{4}\right)_{i}$. Here, since $W_{l} \subseteq V\left(G \odot P_{4}\right)$ and $B_{i} \subseteq W_{l}$, oy Lemma 2.1 then $W_{l}$ is a local resolving set of $G \odot P_{4}$. Because $u_{i}$ and $v_{i 1}$ is adja ${ }_{3}$ nt with $v_{i 2}$ and $v_{i 4}$ is adjacent with $v_{i 3}$ so that $W_{l}$ is a dominating set of $G \odot P_{4}$. Thus, $W_{l}$ is a dominant local metric dime ${ }_{3}$ ion of $G \odot P_{4}$. Next, we choose any $S \subseteq V\left(G \odot P_{4}{ }^{3}\right.$ with $|S|<\left|W_{l}\right|$. Let $|S|=\left|W_{l}\right|-1$, then there exists $i$ such that $S$ consi ${ }_{4}$ of maximally $\left|B_{i}\right|-1$ elements of $V\left(P_{4}\right)_{i}$. Since ${ }^{4} B_{i}$ is a dominant local basis of $\left(P_{4}\right)_{i}$ then there exist two vertex elements of ${ }_{9}\left(\left(P_{4}\right)_{i}\right)$ which have the same representation to $S$ or mere exists a vertex of $V\left(\left(P_{4}\right)_{i}\right)$ which is not adjacent with any vertex in $S$, so that $S$ is not a local resolving set or $S$ is not a dominating set of $G \odot P_{4}$. Look at Lemma 3.1 then $W_{l}=\cup_{i=1}^{m} B_{i}$ is the dominant local basis of $G \odot P_{4}$. Hence, $\operatorname{Dim}_{l}\left(G \odot P_{4}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(P_{4}\right)$ for $n=4$.
2. For $n \geq 5$

Let $B$ be a local dominant basis of $P_{n},{ }^{3} B_{i}$ is a local dominant basis of $\left(P_{n}\right)_{i}$, hence for every $i=$ $1,2,3, \ldots, m,\left|B_{i}\right|=|B|$. Choose $W_{l}=\cup_{i=1}^{m} B_{i}$, by Lemma 3.2 since $B_{i}$ is a local dominant basis of $K_{1}+\left(P_{n}\right)_{i}$ then $V_{4}$ is a local dominant resolving set of $G \odot P_{n}$. Then, $n$ will be demonstrated that $W_{l}$ is a local dominant resolving set with lowest cardinality. Take any $S \subseteq V\left(G \odot P_{n}\right)$ with $|S|<\left|W_{l}\right|$. Let $|S|=\left|W_{l}\right|-1$, then there exists $i$ such that $S$ comprise maximally $\left|B_{i}\right|-1$ elements of $K_{1}+\left(P_{n}\right)_{i}$. Since $B_{i}$ is a local dominant basis of $K_{1}+\left(P_{n}\right)_{i}$ then there exist two vertices in $K_{1}+\left(P_{n}\right)_{i}$ have the same representation, so that $S$ is neither a local resolving set nor dominating set of $G \odot P_{n}$. Based on Lemma 3.1 then $W_{l}=\cup_{i=1}^{m} B_{i}$ is a local dominant basis of $G \odot P_{n}$. Since $\left|B_{i}\right|=\operatorname{Dim}_{l}\left(K_{1}+\left(P_{n}\right)_{i}\right)$ and by Lemma 3.2 we know that $\operatorname{Dim}_{l}\left(K_{1}+P_{n}\right)=\operatorname{Dim}_{l}\left(P_{n}\right)$. Therefore, it has been proven that for $n \geq 5 \operatorname{Dim}_{l}\left(G \odot P_{n}\right)=$ $|V(G)| \times \operatorname{Dim}_{l}\left(P_{n}\right)$.
From the explanation above in poin (1) and (2), it is proven that for $n \geq 4, \operatorname{Dim}_{l}\left(G \odot P_{n}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(P_{n}\right)$.

Figure 2 shows the example of $C_{3} \odot P_{6}$ has dominant local metric dimension equals six. The dominant local basis is shown by bigger vertices. Following that, we demonstrate


Fig. 2. $\quad C_{3} \odot P_{6}$ has dominant local metric dimension equals six.
the dominant local metric dimension of $G \odot C_{m}$. Before it, we would show a Lemma related to the proof.
Lemma 3.4 If $C_{m}$ is a cycle and $\left|V\left(C_{m}\right)\right|=m \geq 6$, then

$$
\operatorname{Ddim}_{l}\left(K_{1}+C_{m}\right)=\operatorname{Dim}_{l}\left(C_{m}\right)
$$

Proof. Let $V\left(K_{1}\right)=\left\{u_{1}\right\}, V\left(C_{m}\right)={ }^{3} \mid i=$ $1,2,3, \ldots, m\}$ and $E\left(C_{m}\right)=\left\{v_{i} v_{i+1} \mid i=1,2,3, \ldots, m-\right.$ $1\} \cup\left\{v_{1} v_{m}\right\}$. We give the vertex labels of $K_{1}+C_{m}$, that is $V\left(K_{1}+C_{m}\right)=\left\{u_{1}, v_{i} \mid 1 \leq i \leq m\right\}$, while $E\left(K_{1}+C_{m}\right)=$ $\left\{u_{1} v_{i}, \mid 1 \leq i \leq m\right\} \cup\left\{v_{i} v_{i+1} \mid 1 \leq i \leq m-1\right\} \cup\left\{v_{1} v_{m}\right\}$. To ascertain $D \operatorname{dim}_{4}\left(K_{1}+C_{m}\right.$, it divides into 2 parts.
a For $m \equiv{ }^{4}(\bmod 3)$
Put $W_{l}=\left\{v_{1}, v_{4}, v_{7}, v_{10}, \ldots, v_{3 i-2}\right\}$, the ${ }_{11}\left|W_{l}\right|=$ $\left\lceil\frac{m}{3}\right\rceil=\operatorname{Dim}_{l}\left(C_{m}\right)$. Based on Lemma 2.2 ${ }^{11}$ or every $v_{i}, v_{j} \in W_{l}$ we get $r\left(v_{i} \mid W_{l}\right) \neq r\left(v_{j} \mid W_{l}\right)$ for $i \neq j$. Next, since for every $u_{1}$ and $v_{i} \in V\left(K_{1}+C_{m}\right) \backslash W_{l}$ we get:

$$
\begin{gathered}
r\left(u_{1} \mid W_{l}\right)=(\underbrace{1,1,1, \ldots, 1}_{\left\lceil\frac{m}{3}\right\rceil-\text { tuple }}) \\
r\left(v_{i} \mid W_{l}\right)=\left\{\begin{array}{l}
(1,2,2,2, \ldots, 2,2,2) \\
\text { for } i=2, m \\
(2,2,2, \underbrace{1}, 2,2, \ldots, 2,2,2), \\
\text { for } 2<i<m-3 \\
(2,2,2, \ldots, 2,2,2,1) \\
\text { for } i=m-1, m-3
\end{array}\right.
\end{gathered}
$$

Furthermore, every two adjacent vertices have a different representation to $W_{l}$ then $W_{l}$ is a local resolving set of $K_{1}+C_{m}$. Since $C_{m}$ is a cycle with $E\left(C_{m}\right)=\left\{v_{i_{13}}{ }^{1} \mid i=1,2,3, \ldots, m-1\right\} \cup\left\{v_{1} v_{m}\right\}$, then for every ertex $v_{3 i-1}$ is adjacent to $v_{3 i-2}$ and $v_{3 i}$ is adjacent to $v_{3(i+1)-2}$. Besides that, the vertex $u_{1}$ is adjacent to the elements of $W_{l}$. Therefore, $W_{l}$ is dominant local resolving set of $K_{1}+C_{m}$. Next, we
${ }^{2}$ noose any $S \subseteq V\left(K_{1}+C_{m}\right)$ with $|S|<\left|W_{l}\right|$, let $|S|=\left|W_{l}\right|-1$. Then, there are 2 conditions of $S$.
i $S$ does not contain $u_{1}$, then $S \subseteq V\left(C_{m}\right)$. Based on Theorem 1.1, $\gamma\left(C_{m}\right)=\left\lceil\frac{\mathrm{m}}{3}\right\rceil$. Because of $S<$ $\left\lceil\frac{m}{3}\right\rceil$, then $S$ is not dominating set of $K_{1}+C_{m}$.
ii $S$ contains $u_{1}$, then the elements of $V\left(C_{m}\right)$ which are also the element of $S$ consist of $\left\lceil\frac{m}{3}\right\rceil-$ 2 elements. Hence, there exists $v_{f}, v_{f+5} \in S$ and ${ }_{2+1}, v_{f+2}, v_{f+3}, v_{f+4} \notin S$. Consequently, $r\left(v_{f+2} \mid S\right)=r\left(v_{f+3} \mid S\right)$. Therefore, $S$ is not a local resolving set of $K_{1}+C_{m}$.
Considering the two scenarios described above, $\mathrm{S}_{2}^{2}$ not a dominant local resolving set of $K_{1}+C_{m}$. By Lemma 3.1, it can be concluded that $W_{l}$ is a local dominant basis of $\frac{K}{4}+C_{m}, m \equiv 0(\bmod 3)$.
b For $m \neq{ }^{4}(\bmod 3)$
Put $W_{l}=\left\{v_{1}, v_{4}, v_{7}, v_{1} 0, \ldots, v_{3 i-2}, v_{m}\right\}$ th $\left|W_{l}\right|=$ $\left\lceil\frac{m}{3}\right\rceil=\operatorname{Dim}_{l}\left(C_{m}\right)$. Based on Lemma 2.2 or every $v_{i}, v_{j} \in W_{l}$ we get $r\left(v_{i} \mid W_{l}\right) r\left(v_{j} \mid W_{l}\right)$ for $i \neq j$. Next, since for every $u_{1}$ and $v_{i} \in V\left(K_{1}+C_{m}\right) \backslash W_{l}$ we get:

$$
\begin{gathered}
r\left(u_{1} \mid W_{l}\right)=(\underbrace{1,1,1, \ldots, 1}_{\left\lceil\frac{m}{3}\right\rceil-\text { tuple }}) \\
r\left(v_{i} \mid W_{l}\right)=\left\{\begin{array}{l}
(1,2,2,2, \ldots, 2,2,2), \\
\text { for } i=2 \\
(2,2,2, \underbrace{1}_{\left.\sum_{i}\right\rfloor^{t h}}, 2,2, \ldots, 2,2,2), \\
\text { for } 2<i<m-2 \\
(2,2,2, \ldots, 2,2,2,1), \\
\text { for } i=m-1
\end{array}\right.
\end{gathered}
$$

Furthermore, every two adjacent vertices have a different representation to $W_{l}$ then $W_{l}$ is a local resolving set of $K_{1}+C_{m}$. Since $C_{m}$ is a cycle with $E\left(C_{m}\right)=$ $\left\{v_{i} v_{i+1} \mid i=1,2,3, ; m-1\right\} \cup\left\{v_{1} v_{m}\right\}$, then for every


Fig. 3. $K_{1} \odot C_{6}$ has dominant local metric dimension equals two.

## (1)

ertex $v_{3 i-1}$ is adjacent to $v_{3 i-2}$ and $v_{3 i}$ is adjacent to $v_{3(i+1)-2}$. Besides that, the vertex $u_{1}$ is adjacent to the elements of $W_{l}$. Therefore, $W_{l}$ is dominating set of $K_{1}+C_{m}$ and $W_{l}$ dominant local resolving set of $K_{1}+C_{m}$. Next, it is shown that $W_{l}$ is a dominant local resolving set with minimum cardinality. Choose any $S \subseteq V\left(K_{1}+C_{m}\right)$ with $|S|<\left|W_{l}\right|,|S|=\left|W_{l}\right|-1$. Then, there are two cases of $S$.
i. $S$ does not contain $u_{1}$, then $S \subseteq V\left(C_{m}\right)$. Based on Theorem 1.1, $\gamma\left(C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil$. Because of $S<$ $\left\lceil\frac{m}{3}\right\rceil$, then $S$ is not dominating set of $K_{1}+C_{m}$.
ii. $S$ contains $u_{1}$, then the elements of $V\left(C_{m}\right)$ which are also the element of $S$ consist of $\left\lceil\frac{m}{3}\right\rceil-$ 2 elements. Hence, there exists $v_{x}, v_{x+5} \in S$ and ${ }_{2+1}, v_{x+2}, v_{x+3}, v_{x+4} \notin S$. Consequently, $r\left(v_{x+2} \mid S\right)=r\left(v_{x+3} \mid S\right)$. Therefore, $S$ is not a local resolving set of $K_{1}+C_{m}$.
Considering the two scenarios described above, $s^{2}$ to not a dominant local dominant resolving set of $K_{1}+C_{m}$. By Lemma 3.1, it can be concluded that $W_{l}$ is a local dominant basis of $K_{1}+C_{m}, m \equiv 0(\bmod 3)$.
From the two possibilities in poin (a) and (b), it has been proven that $W_{l}=\left\lceil\frac{m}{3}\right\rceil$ is a local dominant basis of $K_{1}+C_{m}$, for $m \geq 6$. Based on Theorem 2.4, we know that $\operatorname{Ddim}_{l}\left(C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil$. Then, it can be concluded that for $m \geq 6, \operatorname{Dim}_{l}\left(K_{1}+C_{m}\right)=\operatorname{Dim}_{l}\left(C_{m}\right)$.
Figure 3 gives the example that $\operatorname{Dim}_{l}\left(K_{1}+C_{6}\right)=$ $\operatorname{Dim}_{l}\left(C_{6}\right)=2$. While Figure 4 shows that $\operatorname{Dim}_{l}\left(S_{4} \odot\right.$ $\left.C_{6}\right)=8$.
Theorem 3.5 Given a connected graph $G,|V(G)|=n \geq 2$. If $C_{m}$ is a cycle with $m \geq 6$, then

$$
\operatorname{Ddim}_{l}\left(G \odot C_{m}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(C_{m}\right)
$$

Proof. Let $V(G)=\left\{u_{i} \mid 1 \leq i \leq n\right\}, V\left(C_{m}\right)=\left\{v_{j} \mid 1 \leq j \leq\right.$ $m\}$ and $E\left(C_{m}\right)=\left\{v_{j} v_{j+1} \mid 1 \leq j \leq m-1\right\} \cup\left\{v_{m} v_{1}\right\}$. The $i$-th copy of $C_{m}$ with $1 \leq i \leq n$ is called $\left(C_{m}\right)_{i}$ with $\left.V\left(C_{m}\right)_{i}\right)=\left\{v_{i j} \mid 1 \leq j \leq m\right\}$. We give th ${ }_{19}$ labels of $G \odot C_{m}$ by $V\left(G \odot C_{m}\right)=\left\{v_{0 i} \mid 1 \leq i \leq n, u_{i} \in \mathscr{}(G)\right\}$ $\cup\left\{v_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m, v_{i} \in V\left(C_{m}\right)\right\}$, and $E\left(G \odot C_{m}\right)=E(G) \cup_{i=1}^{n} E\left(C_{m}\right)_{i} \cup\left\{u_{i} v_{i j} \mid u_{i} \in V(G), v_{i j} \in\right.$ $\left.V\left(\overline{5}_{n}\right)_{i}\right\}$. Let $B$ as a local dominant basis of $K_{1}+C_{m}$, $B_{i}$ a local dominant basis of $K_{1}+\left(C_{m}\right)_{i}$ so that for every $i=1,2,3, \ldots, n,\left|B_{i}\right|=|B|$. Select $W_{l}=\cup_{i=1}^{n} B_{i}$ , based on Lemma 3.2 since $B_{i}$ is a local dominant basis


Fig. 4. $\quad S_{4} \odot C_{6}$ has dominant local metric dimension equals eight.
of $K_{1}+\left(C_{m}\right)_{i}$ then $W_{l}^{10}$ a local dominant resolving set of $G \odot C_{m}$. Next, we take any $S \subseteq V\left(G \odot C_{m}\right)$ with $|S|<\left|\frac{1}{4}\right|$. Let $|S|=\left|W_{l}\right|-1$, then $\exists i \ni|S| \leq\left|B_{i}\right|-1$. Since ${ }^{4} B_{i}$ is a local dominant basis of $K_{1}+\left(C_{m}\right)_{i}$ then there exist ty ${ }_{9}$ vertices in $K_{1}+\left(C_{m}\right)_{i}$ have the same representation or there exists a verto ${ }_{16}$ in $K_{1}+\left(C_{m}\right)_{i}$ that is not adjacent to any vertex in $S,{ }_{0}^{16}$ that $S$ is not a local resolving set or $S$ is not a dominating ${ }_{3}$ et of $G \odot C_{m}$. Based on Lemma 3.1 then $W_{l}=\cup_{i=1}^{m} B_{i}{ }^{3}$ a local dominant basis of $G \odot C_{m}$. Since $B_{i}$ is a local dominant basis of $K_{1}+\left(C_{m}\right)_{i}$ with $\left|B_{i}\right|=\operatorname{Dim}_{l}\left(K_{1}+\left(C_{m}\right)_{i}\right)$ and by Lemma 3.3 we know that $\operatorname{Dim}_{l}\left(K_{1}+C_{m}\right)=\operatorname{Dim}_{l}\left(C_{m}\right)$. Therefore, it has been proven that for $m \geq 6 \operatorname{Dim}_{l}\left(G \odot C_{m}\right)=$ $|V(G)| \times \operatorname{Dim}_{l}\left(C_{m}\right)$.
The following theorems explain $\operatorname{Ddim}_{l}(G \odot$ $\left.K_{n}\right), \operatorname{Dim}_{l}\left(G \odot S_{n}\right), \operatorname{Dim}_{l}\left(G \odot K_{m, n}\right)$.
Theorem 3.6 Given a connected graph $G,|V(G)|=m \geq 2$. If $K_{n}$ is a complete graph with $n \geq 2$, then

$$
\operatorname{Dim}_{l}\left(G \odot K_{n}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(K_{n}\right)
$$

Proof. ${ }^{6}$ Let $V(G)=\left\{u_{i} \mid 1 \leq i \leq m\right\}, V\left(K_{n}\right)=\left\{v_{j} \mid 1 \leq\right.$ $j \leq n\}$ and $E\left(K_{n}\right)=\left\{v_{j} v_{k} \mid 1 \leq j, k \leq n, j \neq k\right\}$. The $i$-th copy of $K_{n}$ with $1 \leq i \leq m$ is called $\left(K_{n}\right)_{i}$ whose the vertex and edge label are $V\left(\left(K_{n}\right)_{i}\right)=\left\{v_{i j} \mid 1 \leq j \leq n\right\}$ and $\left.E\left(K_{n}\right)_{i}\right)=\left\{v_{i j} v_{i k} \mid v_{j} v_{k} \in E\left(K_{n}\right)\right\}$ cor every $1 \leq i \leq m$. While $G \odot K_{n}$ has $V\left(G \odot K_{n}\right)=\left\{v_{0 i \uparrow} \leq i \leq m\right\} \cup\left\{v_{i j} \mid 1 \leq\right.$ $i \leq m, 1 \leq j \leq n\}$ and $E\left(G \odot K_{n}\right)=\left\{v_{0 i} v_{0 j} \mid u_{i} u_{j} \in\right.$ $E(G)\} \cup\left\{v_{i j} v_{i k} \mid v_{j} v_{k} \in E\left(K_{n}\right)\right\} \cup\left\{v_{0 i} v_{i j} \mid u_{i} \in V(G), v_{j} \in\right.$ $\left.V\left(K_{n}\right)\right\}$. Suppose $B$ be a local dominant basis of $K_{n}, B_{i}$ for $\left(K_{n}\right)_{i}$, thus $\forall 1 \leq i \leq m,\left|B_{i}\right|=|B|$. Put $W_{l}=\cup_{i=}^{m} B_{i}$ , with $B_{i}=\left\{v_{i j} \mid 1 \leq j \leq n-1\right\}$ for every $1 \leq i \leq m$, then $\left|W_{l}\right|=m(n-1)$. Derived from Lemma 2.2, select two adjacent vertices in $V\left(G \odot K_{n}\right) \backslash W_{l}$. In every case, every two adjacent vertices have different representations toward $W_{l}$.

Take any $x, y \in V\left(G \odot K_{n}\right)$ with $x y \in E\left(G \odot K_{n}\right)$, then there exist three cases:
i. For $x, y=v_{0 i}, v_{0 j} \in V\left(G \odot K_{n}\right) \backslash W_{l}$ with $i \neq j$. Since $G$ is a connected graph, $d\left(v_{0 j}, v\right)=d\left(v_{0 j}, v_{0 i}\right)+$ $d\left(v_{0 i}, v\right)$ for every $v \in B_{i}$ so that $d\left(v, v_{0 i}\right) \neq d\left(v, v_{0 j}\right)$ caused $r\left(v_{0 i} \mid B_{i}\right) \neq r\left(v_{0 j} \mid B_{i}\right)$. Since of $B_{i} \subseteq W_{l}$ then $r\left(v_{0 i} \mid W_{l}\right) \neq r\left(v_{0 j} \mid W_{l}\right)$.
ii. For $x, y=v_{i j}, v_{i k} \in V\left(G \odot K_{n}\right) \backslash W_{l}$ with $j \neq k$, $v_{i j} v_{i k} \in E\left(K_{n}\right)_{i}$ for $i=1,2, \ldots, m$. Since $B_{i}$ is a local


Fig. 5. $\quad P_{5} \odot K_{4}$ has dominant local metric dimension equals fifteen.
basis of $\left(K_{n}\right)_{i}$ and $r\left(v_{i j} \mid B_{i}\right) \neq r\left(v_{i k} \mid B_{i}\right)$. Because $B_{i} \subseteq W_{l}$, then $r\left(v_{i j} \mid W_{l}\right) \neq r\left(v_{i k} \mid W_{l}\right)$.
iii. For $x, y=v_{0 i} v_{i j} \in V\left(G \odot K_{n}\right) \backslash W_{l}$. There exist two possibilities.

1) $v_{0 i}$ with $v_{i j} \notin B_{i}$.

If $i \neq k, d\left(v_{0 i}, v_{0 k}\right) \neq d\left(v_{i j}, v_{0 k}\right) \rightarrow \forall v \in B_{i}$ causes $d\left(v, v_{0 i}\right) \neq d\left(v, v_{i j}\right)$. So, $B_{i} \subseteq W_{l}$ make $r\left(v_{0 i} \mid W_{l}\right) \neq r\left(v_{i j} \mid W_{l}\right)$.
2) $v_{0 i}$ with $v_{i j} \in B_{i}$.

Since $v_{i j} \in B_{i}$ then there exists a zero element in $r\left(v_{i j} \mid B_{i}\right)$. Besides that, $d\left(v_{0 i}, v_{i j}\right)=1$ and $v_{0 i} \notin$ $B_{i}$ so, there are no zero elements in $r\left(v_{0 i} \mid B_{i}\right)$. Consequently, $r\left(v_{i j} \mid B_{i}\right) \notin r\left(v_{0 i} \mid B_{i}\right)$. Then, $B_{i} \subseteq$ $W_{l}$ implies $r\left(v_{0 i} \mid W_{l}\right) \neq r\left(v_{i j} \mid W_{l}\right)$.
Considering the two scenarios described above, $W_{l}=$ $\cup_{i=1}^{m} B_{i}$ is a local resolving set of $G \odot K_{n}$. Then, $\forall v_{0 i} \in$ $V(G), 1 \leq i \leq m d\left(v_{0 i}, v_{i j}=1\right.$ where $v_{i j} \in W_{l}$ and $\forall v_{i n} \in V\left(\left(K_{n}\right)_{i}\right), 1 \leq i \leq m d\left(v_{i n}, v_{i j}=1\right.$ where $v_{i j} \in$ $W_{l}$. Then, $W_{l}$ is a dominating set. So that, $W_{l}=\cup_{i=1}^{m} B_{i}$ is a local dominant resolving set of $G \odot K_{n}$. Then, that $W_{l}=\cup_{i=1}^{m} B_{i}^{2}$ a local dominant resolving set with smallest cardinality. Put any $S \subseteq V\left(G \odot K_{n}\right\rangle_{4}$ vith $|S|<\left|W_{l}\right|$. Let $|S|=\left|W_{i}\right|-1$, then $\exists i \ni|S| \leq{ }^{\wedge_{i}} \mid-1$ elements of $\left(K_{n}\right)_{i}$. Since $B_{i}$ is a local dominant basis of $\left(K_{n}\right)_{i}$ then there exist 2 vertices in $\left(K_{n}\right)_{i}$ have same representation toward $S$, it means $S$ is not a local dominant resolving set of $G \odot K_{n}$. Looking back to the Lemma 3.1 is known that $W_{l}=\cup_{i=1}^{m} B_{i}$ is a local dominant basis of $G \odot K_{n}$ with $\left|B_{i}\right|=\operatorname{Dim}_{l}\left(\left(K_{n}\right)_{i}\right)$, hence it has been proven that $\operatorname{Dim}_{l}\left(G \odot K_{n}\right)=\left|W_{l}\right|=|V(G)| \times \operatorname{Dim}_{l}\left(K_{n}\right)$.
Figure 5 gives an example of $G \odot K_{n}$. It is $P_{5} \odot K_{4}$ whose has dominant local metric dimension equals fifteen. The vertices that are printed larger are elements of the dominant local basis of $P_{5} \odot K_{4}$.
We can demonstrate the following theorems by using similar techniques to demonstrate that $\operatorname{Dim}_{l}$ of a connected graph $G$ with a star and a complete bipartite graph is as stated.
Theorem 3.7 Given a connected graph $G,|V(G)|=m \geq 2$. If $S_{n}$ is a star with $n \geq 3$, then

$$
\operatorname{Ddim}_{l}\left(G \odot S_{n}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(S_{n}\right)
$$

Proof. Since the steps are similar to the Theorem 3.5, we


Fig. 6. $C_{3} \odot S_{5}$ has dominant local metric dimension equals three.


Fig. 7. $\quad C_{3} \odot K_{3,2}$ has dominant local metric dimension equals six.
only show the dominant local basis of $G \odot_{15}{ }_{n}$. Let $V(G)=$ $\left\{u_{i} 1 \leq i \leq m\right\}$, the vertex set of star is $\left(S_{n}\right)=\{v\} \cup$ $\left\{v_{i} \mid 1 \leq i \leq n-1\right\}, E\left(S_{n}\right)=\left\{v v_{i} \mid 1 \leq i \leq n-1\right\}$. For $G \odot S_{n}, V\left(G \odot S_{n}\right)=\left\{u_{0 i} \mid u_{i} \in V(G), 1 \leq i \leq m\right\} \cup\left\{v_{i} \mid v \in\right.$ $\left.V\left(S_{n}\right), 1 \leq i \leq m\right\} \cup\left\{v_{i j} \mid v_{j} \in V\left(S_{n}\right), 1 \leq i \leq m, 1 \leq j \leq\right.$ $n-1\}$ and $E\left(G \odot S_{12}\right)=\left\{u_{0 i} u_{0 k} \mid u_{i} u_{k} \in E(G) ; 1 \leq i, k \leq\right.$ $m, i \neq k\} \cup\left\{u_{0 i} v_{i}^{12} \leq i \leq m\right\} \cup\left\{v_{i} v_{i j} \mid 1 \leq i \leq m, 1 \leq\right.$ $j \leq n-1\}$. Select $W_{l}=\cup_{i=1}^{m} B_{i}$, with $B_{i}=\left\{v_{i}\right\}$ for every $1 \leq i \leq m$. Therefore, $\operatorname{Dim}_{l}\left(G \odot S_{n}\right)=\left|W_{l}\right|=$ $m \times \operatorname{Dim}_{l}\left(S_{n}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(S_{n}\right)$ for $n \leq 2$.
Theorem 3.8 Given a connected graph $G,|V(G)|=p \geq 2$.
$K_{(m, n)}$ is a complete bipartite graph with $m, n \geq 2$, then

$$
\operatorname{Dim}_{l}\left(G \odot K_{(m, n)}\right)=|V(G)| \times \operatorname{Dim}_{l}\left(K_{m, n}\right)
$$

Proof. It can be proven simila ${ }^{{ }^{1-1}}$ to the two theorems before. Let $V(G)=\left\{u_{k} \mid 1 \leq k \leq p\right\},{ }^{8}\left(K_{m, n}\right)=\left\{a_{i} \mid 1 \leq i \leq m\right\}$ $\cup\left\{b_{j} \mid 1 \leq j \leq n\right\}$, and $E\left(K_{m, n}\right)=\left\{a_{i} b_{j} \mid 1 \leq i \leq\right.$ $m ; 1 \leq j \leq n\}$. We give the vertex label of $G \odot K_{m, n}$ is $V\left(G \odot K_{m, n}\right)=V(G) \cup_{k=1}^{p} V\left(\left(K_{m, n}\right)_{k}\right)$ for the edge $E(G \odot$ $\left.K_{m, n}\right)=E(G) \cup_{k=1}^{p} E\left(\left(K_{m, n}\right)_{k}\right) \cup\left\{u_{k} a_{k i}, u_{k} b_{k j} \mid u_{k} \in\right.$ $\left.V(G) ; a_{k i}, b_{k j} \in V\left(\left(K_{m, n}\right)_{k}\right)\right\}$. Choose $W_{l}=\cup_{k=1}^{p} B_{k}$, with $B_{k}=\left\{a_{k 1}, b_{k 1}\right\}$ for every $1 \leq k \leq p$, then we get $\operatorname{Ddim}_{l}\left(G \odot K_{m, n}\right)=\left|W_{l}\right|=|V(G)| \times \operatorname{Dim}_{l}\left(K_{m, n}\right)$.

## IV. Conclusion

In this study, we identified a local resolving property as well as $\operatorname{Ddim}_{l}\left(G \odot P_{m}\right), \operatorname{Dim}_{l}\left(G \odot C_{n}\right), \operatorname{Dim}_{l}(G \odot$ $\left.K_{n}\right), \operatorname{Dim}_{l}\left(G \odot S_{n}\right)$ and $\operatorname{Dim}_{l}\left(G \odot K_{m, n}\right)$. The presented results still lead to several open questions, such as how about $\operatorname{Dim}_{l}(G \odot H)$ for $G$ and $H$ are any two connected graphs.

This research can also be expanded to another operation of graphs.

## REFERENCES

[1] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discret. Appl. Math., vol. 70, no. 3, pp. 217229, 1996, doi: 10.1016/0166-218X(95)00106-2.
[2] I. Saifudin and R. Umilasari, Penempatan Anjungan Tunai Mandiri ( ATM ) pada Kecamatan Sumbersari Kabupaten Jember Menggunakan Teori Bilangan Dominasi, Justindo, pp. 112120, 2017.
[3] Y. Ma and G. Liu, Some results on fractional $k$-extendable graphs., Chin. J. Eng. Math., vol. 21, no. 4, pp. 567573, 2004.
[4] S. Arumugam and V. Mathew, The fractional metric dimension of graphs, Discrete Math., vol. 312, no. 9, pp. 15841590, 2012, doi: 10.1016/j.disc. 2011.05.039.
[5] M. Basak, L. Saha, and K. Tiwary, Metric Dimension of Zero-Divisor Graph for the Ring Z n, vol. 6, no. 6, pp. 7478, 2019.
[6] G. A. Barragn-Ramrez and J. A. Rodrguez-Velzquez, The Local Metric Dimension of Strong Product Graphs, Graphs Comb., vol. 32, no. 4, pp. 12631278, 2016, doi: 10.1007/s00373-015-1653-z.
[7] Rinurwati, H. Suprajitno, and Slamin, On local adjacency metric dimension of some wheel related graphs with pendant points, AIP Conf. Proc., vol. 1867, no. August, 2017, doi: 10.1063/1.4994468.
[8] D. Kuziak, I. G. Yero, and J. A. Rodrguez-Velzquez, Strong metric dimension of rooted product graphs, Int. J. Comput. Math., vol. 93, no. 8, pp. 12651280, 2016, doi: 10.1080/00207160.2015.1061656.
[9] A. F. Beardon and J. A. Rodrguez-Velzquez, On the k-metric dimension of metric spaces, Ars Math. Contemp., vol. 16, no. 1, pp. 2538, 2019, doi: 10.26493/1855-3974.1281.c7f.
[10] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, and P. Valicov, Identification, Location-Domination and Metric Dimension on Interval and Permutation Graphs. II. Algorithms and Complexity, Algorithmica, vol. 78, no. 3, pp. 914944, 2017, doi: 10.1007/s00453-016-0184-1.
[11] L. Susilowati, I. Saadah, R. Z. Fauziyyah, A. Erfanian, and Slamin, The dominant metric dimension of graphs, Heliyon, vol. 6, no. 3, p. e03633, 2020, doi: 10.1016/j.heliyon.2020.e03633.
[12] R. Umilasari, L. Susilowati, and Slamin, Dominant Local Metric Dimension of Wheel Related Graphs, IOP Conf. Ser. Mater. Sci. Eng., vol. 1115, no. 1, p. 012029, 2021, doi: 10.1088/1757-899x/1115/1/012029.
[13] R. P. Adirasari, H. Suprajitno, and L. Susilowati, The dominant metric dimension of corona product graphs, Baghdad Sci. J., vol. 18, no. 2, pp. 349356, 2021, doi: 10.21123/BSJ.2021.18.2.0349.
[14] K. Snyder, c-Dominating Sets for Families of Graphs, 2011.
[15] F. Okamoto, L. Crosse, B. Phinezy, Z. Ping, and Kalamazoo, The Local Metric Dimension of Cyclic Split Graph, vol. 8, no. 2, pp.201205, 2014.
[16] R. Umilasari, L. Susilowati, and s Slamin, On the Dominant Local Metric Dimension of Graphs, SSRN Electron. J., no. 1976, 2021, doi: 10.2139/ssrn. 3917477.

- $19 \%$ Overall Similarity

Top sources found in the following databases:

- 12\% Internet database
- 10\% Publications database
- Crossref database
- Crossref Posted Content database
- $14 \%$ Submitted Works database


## TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Padjadjaran University on 2023-01-02

Submitted works

2

# Liliek Susilowati, Siti Istikhomah, Moh. Imam Utoyo, S. Slamin. "The loc... 

Crossref

3
ncbi.nlm.nih.gov
Internet

4
Universitas Jember on 2019-11-16
Submitted works

5


Crossref

6
ijma.info
Internet

7 repository.unmuhjember.ac.id
Internet
Vels University on 2019-10-10
Submitted works

```
Alessandro D'Atri. "Distance-Hereditary Graphs, Steiner Trees, and Con... < \(1 \%\)
``` Crossref
L. Susilowati, M. I. Utoyo, Slamin. "ON COMMUTATIVE CHARACTERIZ... ..... <1\%
 Crossref

\title{
Sohan Lal, Vijay Kumar Bhat. "On the dominant local metric dimension < \(1 \%\)
} Crossref
```mafiadoc.com<1\%
```

Internet

Higher Education Commission Pakistan on 2011-01-18Submitted works
Higher Education Commission Pakistan on 2015-04-08
Submitted works ..... < $1 \%$
researchmathsci.org ..... < $1 \%$InternetLiliek Susilowati, Imroatus Sa'adah, Utami Dyah Purwati. "On the joint p... <1\%Crossref
Andang Miatmoko, Ester Adelia Mianing, Retno Sari, Esti Hendradi. "Na... ..... <1\%
Crossref
ijiset.com
Internet ..... <1\%
1 library.net ..... < $1 \%$
Internetarxiv.orgInternet<1\%


Internet

Zulfaneti, Edy Tri Baskoro. "The Metric-Location-Domination Number o... < $1 \%$ Crossref

Internet


[^0]:    Manuscript received January 4, 2022; revised October 21, 2022. This work $17^{\mathrm{s}}$ supported by DRPM, KEMENRISTEK of Indonesia, Dcree $17 / \mathrm{E} / \mathrm{KPT} / 2021$, Contract No.4/E1/KP.PTNBH/2021 and 460/UN3.15/PT/2021, year 2021.

    Reni Umilasari is a PhD candidate of Mathematics Department, Airlangga University, Indonesia. e-mail: reni.umilasari@unmuhjember.ac.i 10
    Liliek Susilowati is a Lecturer of Mathematics Department, irlangga University, Indonesia. e-mail: liliek-s@fst.unair.ac.id
    Slamin is a Professor of Study Program of Informatics, Jember University, Indonesia. e-mail: slamin@unej.ac.id
    Savari $\mathrm{P}_{21} \mathrm{Ju}$ is an Associate Professor of Mathematics Department, Rajalakshm 21 ngineering College, Chennai 602105, Tamil Nadu, India. email: drsavariprabhu@gmail.com

