TUGAS AKHIR

ANALISA AKURASI PENGUKURAN KWH METER TUA DI PT. PLN (PERSERO) ULP KLAKAH DENGAN MELAKUKAN TERA ULANG MENGGUNAKAN ALAT TERA PORTABEL BERBASIS SENSOR PZEM-004T

Diajukan sebagai salah satu syarat untuk kelulusan Strata Satu (S1) Program studi Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Jember

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER 2024

HALAMAN PERSETUJUAN SIDANG TUGAS AKHIR

Yang bertanda tangan dibawah ini:

Dosen pembimbing, I : Dr. Muhammad A'an Auliq, S.T., M.T.

NPK : 1978101310503509

Dosen pembimbing II : Fitriana, S.Si., M.T.

NPK : 1991041512003930

Sebagai Dosen Pembimbing Tugas Akhir (TA), pada Mahasiswa:

Nama : Muhammad Ali Ridho

NIM : 1810622004

Program Studi : Teknik Elektro

Bersama ini menyatakan:

Menyetujui mahasiswa tersebut diatas untuk maju dalam sidang Tugas Akhir dengan judul "Analisa Akurasi Pengukuran kWh Tua Di PT. PLN (Persero) ULP Klakah Dengan Melakukan Tera Ulang Menggunakan Alat Tera Portabel Berbasis sensor PZEM-004T"

Jember, 15 Juli 2024

Dosen Pembimbing I

Dosen Pembimbing II

Dr. Muhammad A'an Auliq, S.T., M.T.

NPK. 1978101310503509

Fitriana, S.Si., M.T. NPK. 1991041512003930

. Mengetahui,

Ketua Program Studi Teknik Elektro Universitas Muhammadiyah Jember

> Fitriana, S.Si., M.T. NPK.1991041512003930

LEMBAR PENGESAHAN DOSEN PENGUJI

ANALISA AKURASI PENGUKURAN KWH METER TUA DI PT. PLN (PERSERO) ULP KLAKAH DENGAN MELAKUKAN TERA ULANG MENGGUNAKAN ALAT TERA PORTABEL BERBASIS SENSOR PZEM-004T

Diajukan untuk melengkapi tugas dan memenuhi syarat kelulusan Strata Satu (S1) Program studi Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Jember

Oleh:

Muhammad Ali Ridho

NIM.1810622004

Jember, 15 Juli 2024

Telah Diperiksa dan Disetujui Oleh:

Dosen Penguji I

Dosen Penguji II

Aji Brahma Nugroho, S.Si., M.T.

NPK. 1986013011509641

Dr. Bagus Setya Rintyarna, S.T., M.Kom.

NPK. 1979012910509502

LEMBAR PENGESAHAN TUGAS AKHIR

ANALISA AKURASI PENGUKURAN KWH METER TUA DI PT. PLN (PERSERO) ULP KLAKAH DENGAN MELAKUKAN TERA ULANG MENGGUNAKAN ALAT TERA PORTABEL BERBASIS SENSOR PZEM-004T

Diajukan untuk melengkapi tugas dan memenuhi syarat kelulusan Strata Satu (S1) Program studi Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Jember

Oleh:

Muhammad Ali Ridho NIM.1810622004

Jember, 15 Juli 2024 Telah Diperiksa dan Disetujui Oleh:

Dosen Pembimbing I

Dosen Pembimbing II

Dr. Muhammad A'an Auliq, S.T., M.T. NPK. 1978101310503509

Fitriana, S.Si., M.T. NPK. 1991041512003930

Mengetanui,

Dekan Fakultas Teknik Universitas Mahammadiyah Jember Ketua Program Studi Teknik Elektro Universitas Muhammadiyah Jember

Or. Ir Muhtar, S.T.,M.T.,IPM... NIP: 197306102005011001 Fitriana, S.Si., M.T. NPK. 1991041512003930

PERNYATAAN

Saya yang bertanda tangan dibawah ini:

Nama : Muhammad Ali Ridho

NIM : 1810622004

Program Studi: S-1 Teknik Elektro

Menyatakan dengan sesungguhnya bahwa karya ilmiah berupa tugas akhir yang berjudul "Analisa Akurasi Pengukuran kWh Tua Di PT. PLN (Persero) ULP Klakah Dengan Melakukan Tera Ulang Menggunakan Alat Tera Portabel Berbasis" adalah benar-benar karya sendiri, berdasarkan hasil penelitian, pemikiran , dan pemaparan asli sari diri saya sendiri, bukan merupakan plagiarism,pencurian hasil karya orang lain, ataupun segala kemungkinan lainyang pada hakikatnya bukan merupakan karya tugas akhirsaya secara orisinil dan otentik. Jika terdapat karya orang lain saya akan mencantumkan sumber yang jelas.

Dengan pernyataan ini saya buatdengan sebenar-benarnya, tanpa adanya tekanan dan paksaan dari pihak manapun, serta bersedia mendapatkan sanksi akademik dan sanksi lain sesuai dengan peraturan yang berlaku di Universitas Muhammadiyah Jember, jika ternyata dikemudian hari pernyataan ini tidak benar.

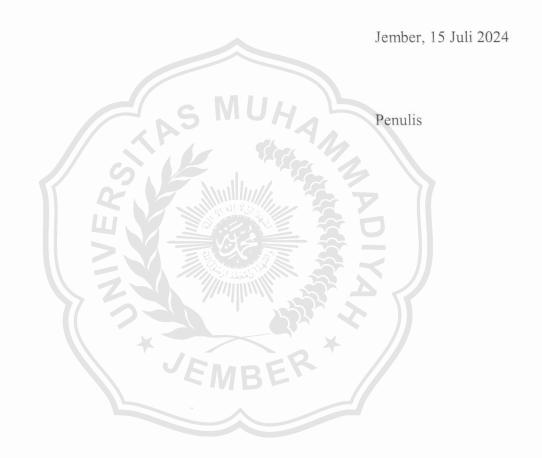
Jember, 15 Juli 2024

Muhammad Ali Ridho

NIM.1810622004

90ALX186766489

KATA PENGANTAR


Alhamdulillah, puji syukur saya panjatkan kehadirat Allah S.W.T. dan Shalawat serta salam senantiasa terlimpahkan kepada junjungan Nabi besar Muhammad S.A.W. Berkat Rahmat dan Hidayah-Nya saya dapat menyelesaikan skripsi dengan judul "Analisa Akurasi Pengukuran kWh Tua Di PT. PLN (Persero) ULP Klakah Dengan Melakukan Tera Ulang Menggunakan Alat Tera Portabel Berbasis Sensor PZEM-004T" dengan penuh kemudahan.

Terselesaikannya penulisan skripsi ini tidak terlepas dari Do'a, dukungan, bantuan, serta bimbingan dari beberapa pihak, sehingga penulis mengucapkan beribu terima kasih kepada:

- 1) Bapak Dr. Ir. Muhtar, S.T.,M.T.,IPM., selaku Dekan Fakultas Teknik Universitas Muhammadiyah Jember
- 2) Bapak Dr. Muhammad A'an, S.T, M.T selaku Dosen Pembimbing I yang telah membantu memberikan bimbingan dan pengarahan
- 3) Ibu Fitriana, S.Si., M.T., selaku Ketua Program Studi Teknik Elektro sekaligus Pembimbing II yang telah membantu memberikan bimbingan dan pengarahan
- 4) Bapak Aji Brahma Nugroho, S.Si., M.T. selaku Dosen Penguji I
- 5) Bapak Dr. Bagus Setya Rintyarna, S.T., M.Kom. selaku Dosen Penguji II
- 6) Bapak Ibu Dosen Program Studi Teknik Elektro Universitas Muhammadiyah Jember
- 7) Ibu dan istri tercinta yang selalu memberikan do'a dan dukungan yang begitu penting bagi penulis
- 8) Seluruh keluarga besar yang juga memberikan do'a dan dukungan yang begitu besar
- Bapak M. Alfian Rachman, selaku Manajer PLN Unit Layanan Pelanggan Klakah yang telah memberikan dukungan
- Seluruh rekan kerja yang telah memberikan bantuan ide, gagasan, serta dukungan semangat.

 Sahabat serta rekan kuliah Angkatan 2018 yang membantu dan memberikan dukungan.

Penulis menyadari bahwa dalam penulisan skripsi ini masih terdapat banyak kekurangan, oleh sebab itu kritik dan saran membangun penulis harapkan sebagai perbaikan serta penyempurnaan kedepan. Semoga skripsi ini dapat memberi manfaat bagi penulis dan para pembaca, dan untuk semua pihak penulis ucapkan terimakasih.

DAFTAR ISI

HALAMAN JUDUL	. i
HALAMAN PERSETUJUAN SIDANG TUGAS AKHIR	. ii
LEMBAR PENGESAHAN DOSEN PENGUJI	iii
PERNYATAAN	. v
KATA PENGANTAR	vi
DAFTAR ISIv	iii
DAFTAR GAMBAR	. X
DAFTAR TABEL	xii
ABSTRAK	
BAB 1. PENDAHULUAN	iv
BAB 1. PENDAHULUAN	. 1
1.1 Latar Belakang.	. 1
1.2 Rumusan Masalah	. 2
1.3 Tujuan	. 3
1.4 Manfaat	
1.6 Sistematika Penulisan	
BAB 2. TINJAUAN PUSTAKA	. 5
2.1 KWh meter	., 5
2.2 TERA Ulang	. 9
2.3 Mikrokontroler NodeMCU ESP8266	10
2.4 Sensor PZEM-004T	12
2.5 Arduino IDE	13
2.6 PSU (Power Supply)	17
BAB 3. METODOLOGI PENELITIAN	21
3.1 Tahapan Penelitian	21
3.2 Blok Diagram Alat TERA Ulang Portabel	22
3.3 Perancangan Alat	23
3.4 Flowchart sistem kerja Alat TERA Portabel	26
3.5 Tahapan Pengambilan Data Menggunakan Alat TERA Ulang Portabel	27
BAB 4. HASIL DAN PEMBAHASAN	28
4.1 TERA ulang Kwh meter	28

4.2	Alat TERA Portabel berbasis Sensor PZEM-004T	29
4.3	Pengujian Power Supply	30
4.4	Kalibrasi alat TERA portable	32
4.5	Proses Tera ulang kWH meter tua	35
BAB 5.	PENUTUP	55
5.1	Kesimpulan	55
5.2	Saran	55
DAFTA	RPUSTAKA	56

DAFTAR GAMBAR

Gambar 2.1 KWh Meter Analog	5
Gambar 2.2 Konstruksi KWH Meter Analog	
Gambar 2.3 Gambar KWh Meter Digital	7
Gambar 2.4 Bagian-bagian kWh meter digital	
Gambar 2. 5 Diagram proses TERA ulang kWh meter	
Gambar 2. 6 mikrokontroler nodeMCU ESP8266	10
Gambar 2.7 Sensor PZEM-004T	13
Gambar 2. 8 Tampilan Arduino IDE	14
Gambar 2. 9 Blok Diagram Arduino Board	14
Gambar 2.10 Skema proyek blink	16
Gambar 2. 11 Power Supply Hi-Link	18
Gambar 2.12 Blok diagram catu daya	
Gambar 3.1 Tahapan penelitian	
Gambar 3.2 Blok Diagram Alat TERA Ulang Portabel	22
Gambar 3.3 Desain alat TERA portabel tampak depan	23
Gambar 3.4 Rancangan perangkat keras (Hardware)	
Gambar 3.5 Skematik rangkaian alat TERA portabel	25
Gambar 3.6 Flowchart sistem kerja alat	26
Gambar 4.1 Alat TERA Ulang Portable	29
Gambar 4.2 Pengujian tegangan keluar (Vout) power supply tanpa beban	31
Gambar 4.3 Pengujian tegangan keluar (V _{OUT}) power supply dengan beban	32
Gambar 4.4 Proses kalibrasi alat TERA portabel	32
Gambar 4.5 Daya yang terukur di alat TERA portabel dan di Amper pembandin	g
	33
Gambar 4. 6 Diagram perbandingan hasil ukur pada alat TERA Portabel dan ala	ıt
ukur pembanding	
Gambar 4.7 Foto kwh meter pelanggan 1	36
Gambar 4.8 Display pengukuran alat TERA portabel pelanggan 1	36
Gambar 4.9 Foto kwh meter pelanggan 2	38
Gambar 4.10 Display pengukuran alat TERA portabel pelanggan	38
Gambar 4.11 Foto kwh meter pelanggan 3	
Gambar 4.12 Display pengukuran alat TERA portabel pelanggan 3	40
Gambar 4.13 Foto kwh meter pelanggan 4	
Gambar 4.14 Display pengukuran alat TERA portabel pelanggan 4	41
Gambar 4.15 Foto kwh meter pelanggan 5	
Gambar 4.16 Display pengukuran alat TERA portabel pelanggan 5	43
Gambar 4.17 Foto kwh meter pelanggan 6	
Gambar 4.18 Display pengukuran alat TERA portabel pelanggan 6	45
Gambar 4.19 Foto kwh meter pelanggan 7	
Gambar 4.20 Display pengukuran alat TERA portabel pelanggan 7	46
Gambar 4.21 Foto kwh meter pelanggan 8	
Gambar 4.22 Display pengukuran alat TERA portabel pelanggan 8	48

Gambar 4.23 Foto kwh meter pelanggan 9	49
Gambar 4.24 Display pengukuran alat TERA portabel pelanggan 9	50
Gambar 4.25 Foto kwh meter pelanggan 10	51
Gambar 4.26 Display pengukuran alat TERA portabel pelanggan 10	51

хi

DAFTAR TABEL

	Tabel 2. 1 Spesifikasi kWh meter analog 1 fasa	
	Tabel 2. 2 Spesifikasi kWh meter digital 1 fasa	9
7	Tabel 2. 3 Spesifikasi Mikrokontroler NodeMCU ESP8266	11
	Tabel 2. 4 Spesifikasi sensor PZEM-004T	
	Tabel 2. 5 Spesifikasi software Arduino IDE	16
	Tabel 2. 6 Spesifikasi Power Supply Hi-link	18
	Tabel 3. 1 Spesifikasi Alat TERA Portabel	
	Tabel 4.1 Hasil Pengujian Power Supply	30
	Tabel 4.2 Hasil Kalibarasi Alat	
	Tabel 4.3 Daftar konsumen yang akan dilakukan sampling pengukuran error kW	VH
	meter tua	
	Tabel 4.4 Spesifikasi kwh meter pelanggan 1	36
	Tabel 4.5 Waktu Putaran kWH meter pelanggan 1 Waktu Putaran	
	Tabel 4.6 Spesifikasi kwh meter pelanggan 2	38
	Tabel 4.7 Waktu Putaran kWH meter pelanggan 2	. 38
	Tabel 4.8 Spesifikasi kwh meter pelanggan 3	. 40
	Tabel 4.9 Waktu Putaran kWH meter pelanggan 3	40
	Tabel 4.10 Spesifikasi kwh meter pelanggan 4	42
	Tabel 4.11 Waktu Putaran kwh meter pelanggan 4	. 42
	Tabel 4.12 Spesifikasi kwh meter pelanggan 5.	. 43
	Tabel 4.13 Waktu Putaran kwh meter pelanggan 5	. 44
	Tabel 4.14 Spesifikasi kwh meter pelanggan 6	. 45
	Tabel 4.15 Waktu Putaran kwh meter pelanggan 6	. 45
	Tabel 4.16 Spesifikasi kwh meter pelanggan 7	. 47
	Tabel 4.17 Waktu Putaran kwh meter pelanggan 7	. 47
	Tabel 4.18 Spesifikasi kwh meter pelanggan 8	. 48
	Tabel 4.19 Waktu Putaran kwh meter pelanggan 8	. 49
	Tabel 4.20 Spesifikasi kwh meter pelanggan 9	. 50
	Tabel 4.21 Waktu Putaran kwh meter pelanggan 9	
	Tabel 4.22 Spesifikasi kwh meter pelanggan 10	
	Tabel 4.23 Waktu Putaran kwh meter pelanggan 10	
	Tabel 4.24 Hasil TERA Ulang KWh Meter Pelanggan	. 53