PERENCANAAN PERKERASAN LENTUR JALAN RAYA WONGSOREJO (PERBANDINGAN METODE BINA MARGA 1987 DAN 2013)

*)Apriana Bagus Mubarok.**) Irawati ST,MT.***) Taufan Abadi ST,MT.

**Bagusryan397@gmail.com

Program Studi Teknik Sipil

Fakultas Teknik Universitas Muhammadiyah Jember

Jl.Pantura Wongsorejo Kabupaten Banyuwangi

ABSTRAK

Pedoman manual desain perkerasan jalan raya yang dikeluarkan Direktorat Jenderal Bina Marga merupakan hasil dari modifikasi peraturan dari beberapa negara maju seperti AASHTO milik Amerika serta AUSTROADS milik Australia. Pedoman- pedoman tersebut kemudian disesuaikan dengan kondisi Indonesia sehingga menjadi pedoman resmi sebagai acuan perencanaan tebal perkerasan jalan raya di Indonesia Dengan demikian akan berakibat langsung kepada kebutuhan akan sistem transportasi untuk angkutan ke luar propinsi maupun antar kota,karena lokasinya berdekatan dengan pelabuhan Ketapang Kabupaten Banyuwangi. Salah satu alternatif pemecahanannya dengan meningkatan fasilitas dan kemampuan jaringan jalan. oleh karena itu, perlu direncanakan jalan demi memudahkan arus lalu lintas di daerah tersebut.. Penelitian ini akan dibahas perencanaan perkerasan jalan lentur dengan perbandingan metode Bina Marga 1987 dan 2013 dengan peramalan 20 tahun kedepan. Pedoman-pedoman penelitian ini menggunakan dua pedoman perkerasan jalan lentur Bina Marga tahun 1987 sampai dengan pedoman yang terbaru tahun terbitan 2013 dengan studi kasus ruas jalan pantura Wongsorejo. Menggunakan data serta beberapa parameter yang sama dalam desain perkerasan, guna memudahkan melakukan perbandingan seperti angka pertumbuhan lalu-lintas (i) 5% sebelum tahun 2038 dan 5% untuk pertumbuhan sesudah tahun 2038. Hasil tebal perkerasan jalan lentur dari ke-dua metode sesuai pedoman perkerasan jalan lentur, kemudian dibandingan dan dikaji sehingga menghasilkan evaluasi tiap pedoman manual desain perkerasan jalan lentur.

Kata kunci: Perkerasan Lentur, Bina Marga 1987 dan 2013, Wongsorejo.

PERENCANAAN PERKERASAN LENTUR JALAN RAYA WONGSOREJO (PERBANDINGAN METODE BINA MARGA 1987 DAN 2013)

*)Apriana Bagus Mubarok.**) Irawati ST,MT.***) Taufan Abadi ST,MT.

**Bagusryan397@gmail.com

Program Studi Teknik Sipil

Fakultas Teknik Universitas Muhammadiyah Jember

Jl.Pantura Wongsorejo Kabupaten Banyuwangi

ABSTRACT

The road pavement design manual manual issued by the Directorate General of Highways is the result of modification of regulations from several developed countries such as the US-owned AASHTO and Australian-owned AUSTROADS. The guidelines are then adjusted to Indonesian conditions so that they become official guidelines as a reference for planning the thickness of road pavement in Indonesia. Thus, it will directly affect the need for transportation systems for transportation to other provinces and cities, because the location is close to the Ketapang port of Banyuwangi Regency. One alternative to detention is by increasing the facilities and capabilities of the road network. therefore, it is necessary to plan a road to facilitate traffic flow in the area. This study will discuss flexible road pavement planning by comparing the Bina Marga 1987 and 2013 methods with forecasting for the next 20 years. These research guidelines use two Bina Marga flexible road pavement guidelines in 1987 to the latest guidelines in the 2013 issue year with a case study of the Wongsorejo pantura road. Using data as well as some of the same parameters in pavement design, to make it easier to do comparisons such as traffic growth rates (i) 5% before 2038 and 5% for growth after 2038. Flexural pavement thickness results from the two methods according to guidelines flexible road pavement, then compared and studied so as to produce an evaluation of each manual for flexible road pavement design.

Keywords: Bending Pavement, Bina Marga 1987 and 2013, Wongsorejo.

I. PENDAHULUAN

Jalan raya merupakan akses darat yang harus diperhatikan. Dengan kondisi jalan raya akan tercipta keselamatan, baik, yang keamanan dan kenyamanan bagi pengguna jalan. Peningkatan prasarana transportasi dapat menunjang kelancaran pemerataan pembangunan di daerah maupun nasional. Jalan raya Wongsorejo merupakan jalan raya perbatasan Kabupaten Situbondo dan Banyuwangi. Adapun jalan raya ini adalah kelas I yang banyak dilewati kendaraan berat. Seperti diketahui, jalan raya Wongsorejo ini merupakan jalan raya lintas utara dari berbagai tujuan. Misalkan kendaraan berat (angkutan) dari jawa ke pulau Bali atau sebaliknya akan melewati jalan ini.

Kendaraan berat yang melewati jalan raya Wonsorejo mempunyai tujuan berbeda. Misalkan truk/truk gandengan atau semi/trailer mengangkut barang komoditi atau barang lainnya. Jalan raya Wongsorejo Kabupaten terdapat kepadatan Banyuwangi volume kendaraan. Disini pembebanan kendaraan yang besar dapat menimbulkan kerusakan badan pada jalan. Dengan evaluasi perhitungan tebal perkerasan, nantinya akan memberi alternatif baru atau sumbangsigsih pemekiran secara teknis dalam menetukan tebal lapisan perkerasan jalan tersebut.

Maksud dari pelaksanaan tugas akhir ini adalah untuk mengkaji dan mengevaluasi hasil perbandingan perkerasan lentur. Sedangkan, tujuan dari tugas akhir ini adalah

- untuk mengkaji perencanaan kinerja dan kondisi perkerasan lentur jalan raya Wongsorejo Kabupaten Banyuwangi saat ini?
- 2. Bagaimana melakukan tebal pekerasan lentur dengan metode Bina Marga 1987 dan 2013 untuk peramalan baban lalu-lintas 20 tahun kedepan?

Beberapa pembatasan masalah yang akan dibahas berdasarkan permasalahan yang ada diantaranya:

- Penelitian ini dilaksanakan di jalan raya Wongsorejo Kabupaten Banyuwangi pada KM.267 – KM.269
- Mengevaluasi kinerja jalan raya Wongsorejo Kabupaten Banyuwangi
- 3. Mengevaluasi perencanaan tebal perkerasan lentur dengan metode Bina Marga 1987 dan 2013 pada jalan raya Wongsorejo Kabupaten Banyuwangi dengan usia rencana 20 tahun kedepan.

II.TINJAUAN PUSTAKA

2.1 Kapasitas dan Derajat Kejenuhan Jalan

Didefinisikan Kapasitas jalan sebagai arus maksimum melalui suatu titik di jalan yang dapat dipertahankan per satuan jamnya pada kondisi tertentu. Untuk jalan dua-lajur dua-arah, kapasitas ditentukan untuk arus dua arah (kombinasi dua arah), tetapi untuk jalan dengan banyak lajur, arus dipisahkan per arah dan kapasitas ditentukan per lajur (MKJI (1997).

Untuk nilai kapasitas telah diamati melalui pengumpulan data lapangan selama memungkinkan. Karena lokasi yang mempunyai arus mendekati kapasitas segmen jalan sedikit dan sebagaimana terlihat dari kapasitas simpang sepanjang jalan raya, kapasitas juga telah diperkirakan dari analisa kondisi iringan lalu lintas, dan secara teoritis dengan mengasumsikan hubungan matematik kerapatan, kecepatan Kapasitas jalan luar kota di Indonesia dapat dihitung menggunakan persamaan (1997:18):

$C = C_0 \times FC_w \times FC_{SF} \times FC_{CS}$

Dimana:

C = Kapasitas

Co = Kapasitas dasar

FC_w = Faktor koreksi lebar masuk

FC_{SP} =Faktor penyesuaian kapasitas untuk pemisah arah

- FC_{SF} = Faktor penyesuaian kapasitas untuk hambatan samping dan bahu jalan/kereb
- FC_C = Faktor penyesuaian kapasitas untuk ukuran kota (jumlah penduduk)

Sedangkan perhitungan derajat kejenuhannya dapat dihitung dengan rumus :

$$DS = Q / C$$

Dengan:

C : Kapasitas

DS : Derajat Kejenuhan

Q : Volume Kendaraan.

2.1.1.Perhitungan Lalu-Lintas

Perhitungan Lalulintas Masa

Perencanaan

Rumus umum = LHR (n) = LHR (0)
*
$$(1+1)^n$$

Dengan perkembangan lalu-lintas (I) = %

Umum R encana tahun (n) = tahun

Dalam hal ini Σ kendaraan tahun n = Σ kendaraan tahun * (1 + i) ⁿ

2.2 Dasar Perencanaan Perkerasan Lentur (Analisa Komponen) Bina Marga 1987

2.2.1 Penentuan Besaran Rencana

Besaran rencana adalah angkaangka yang perlu dicari, dihitung, ditetapkan ataupun diperkirakan agar

2.2.3 Penentuan Tebal Perkerasan Indeks tebal perkerasan (ITP) dinyatakan dalam rumus :

ITP = a_1 . $D_1 + a_2$. $D_2 + a_3$. D_3 a_1 , a_2 , a_3 : Koefisien kekuatan relative bahan-bahan perkerasan. D_1 , D_2 , D_3 : Tebal masingmasing lapisan perkerasan (cm). daat menggunakan nomogram penetapan tebal perkerasan.

- a. Umur Rencana (UR)
- b. <u>P</u>ersentase Kendaraan Pada Jalur Rencana

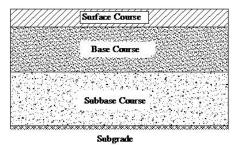
2.2.2 Konsturksi Perkerasan Lentur (Flekxibel Pavement)

Konstruksi perkerasan jalan terdiri dari lapisan-lapisan yaitu tanah dasar dan perkerasan jalan. Bagian perkerasan jalan umumnya meliputi:

- a. Lapisan tanah dasar
- b. Lapisan Pondasi Bawah

Lapisan pondasi bawah (Subbase Course) adalah bagian dari konstruksi perkerasan jalan yang terletak antara lapisan pondasi atas dan tanah dasar.

c. Lapisan Pondasi Atas


Lapisan pondasi atas (Base Course) adalah bagian dari konstruksi perkerasan jalan yang terletak antara lapis permukaan dan lapis pondasi bawah (Subbase Course) atau tanah dasar (Subgrade).

d. Lapisan Permukaan

Lapis permukaan adalah bagian dari konstruksi perkerasan jalan yang terletak paling atas atau diatas lapisan pondasi atas.

Fungsi lapisan permukaan, antara lain:

- * Sebagai bagian perkerasan untuk menahan beban roda.
- * Sebagai lapisan rapat air untuk melindungi badan jalan dari kerusakan akibat cuaca

Gambar 1. Susunan Lapisan Perkerasan Jalan

2.3 Rencana Tebal Perkerasan Metode Bina Marga 2013

Pada perhitungan perkerasan lentur dengan metode Bina Marga 2013, langkah-langkahnya sebagai berikut :

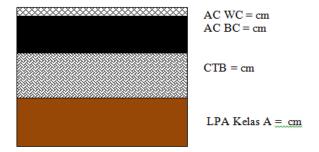
- a. Penetapan Umur Rencana (UR) = tahun
- Klasifikasi Kendaraan dan Nilai VDF standar
- c. Menghitung ESA 20, dengan pertumbuhan lalu lintas (i)
- d. Menghitung Faktor pengali pertumbumhan lalu lintas (R)
- e. Nilai Multi Traffic Multiplier (TM) = 1.8 – 2.0
- f. Menentukan Faktor Distribusi Lajur (DL)
- g. Perhitungan CESA4, CESA5 dan ESA 20 tahun
- h. Pemilihan Jenis Perkerasan
- Solusi Desain 2 Pondasi Jalan minimum
- j. Desain perkerasan lentur opsi biaya minimum
- k. Tebal lapisan perkerasan ACWC, ACBC, CTB dan LPA (struktur perkerasan).

Adapun perhitungan sebagai berikut :

a. Umur Rencana = 20 tahun (direncanakan), dimana pada Manual Perkerasan jalan No.02/M/BM/2013 halaman 9, yaitu Lapisan lentur berbutir dan CTB.

Lapisan Perkerasan	Elemen Perkerasan	Umur Rencana (Tahun)
Perkerasan Lentur	Lapisan atas dan lapisan berbutir dan CBT	20
	Pondasi jalan Semua lapisan jalan untuk area yang tidak diijinkan sering ditinggikan akibat pelapisan ulang, missal: jalan perkotaan, underpass, jembatan,	40

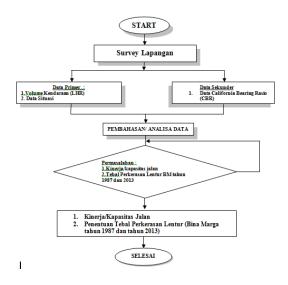
	torowongan	
	Cement Treateed Based	
Perkerasan kaku	Lapis pondasi atas, lapis pondasi bawah, lapis pondasi semen dan pondasi jalan	
Jalan Tanpa Penutup	Semen elemen	Minimum 10


Sumber: Bina Marga 2013

b. Klasifikasi Kendaraan dan Nilai VDF4 standar :

JENIS KENDARAAN	VDF4
Kendaraan ringan (2 ton)	0.3
Bus Kecil	0.3
Bus Besar	0.7
Truk sumbu 2 as	0.8
Truk sumbu 3 as (berat)	1.6
Truk berat (Gandengan)	7.3
Truk trailer/semi trailer	13.6

Sumber: Bina Marga, 2013


- c. Pertumbuhan Lalu Lintas
- d. Perhitungan R: $R=(1+0.01i)^{N}$ 1
- e. Nilai Multi *Traffic Multiplier* (TM) = 1.8 2.0
- f. Menentukan DL = %, dengan 2
 lajur setiap arah (Tabel Faktor Distribusi Lajur).
 Jumlah Lajur dan desain (%).
- g. Jumlah Lajur dan desain (%).
- h. Perhitungan CESA4, CESA5 dan ESA20
- i. Pemilihan jenis perkerasan Pada ESA 20 tahun
- j. Solusi Desain 2 Pondasi Jalan minimum
- k. Desain perkerasan lentur opsi biaya minimum
- Tebal lapisan perkerasan AC WC, AC BC, CTB dan LPA (struktur perkerasan).

Gambar. 2. Struktur Perkerasan

III.METODE PENELITIAN

Tahapan terstruktur dan sistematis diperlukan dalam melakukan penelitian.

Gambar 3.1 Bagan alir atau Flow chart

IV.DATA LAPANGAN DAN PEMBAHASAN

4.1 Data Lokasi Penelitian

Lokasi penelitian Tugas akhir ini dilaksanakan di Jalan raya Wongsorejo KM.267-KM.269 Kabupaten Banyuwangi yang merupakan jalan raya kelas I (propinsi). Hal ini dikarenakan lokasi penelitian ini merupakan penghubung jalan kabupaten Situbondo – Banyuwangi dan Bali. Disamping itu, jalan raya Wongsorejo berdekatan dengan pelabuhan

Ketapang Banyuwangi. Dengan demikian, kondisi lalu lintas banyak didominasi

dengan angkutan barang. Pada penelitian ini akan mengevaluasi atau menghitung kembali tebal perkerasan lentur dengan metode Bina Marga 1987 dan 2013. Pada jalan raya Wongsorejo mempunyai lebar jalan = 7.00 meter dengan lebar bahu jalan antara 1.5 sampai 3.00 meter. Dengan perbadingan hasil hitungan (analisa) pada kedua metode ini, diharapkan akan memberi gambaran secara teknis pada tebal perkerasannya.

Gambar 4.1 Kondisi Jalan

4.2 Data Hasil Survey Lalu Lintas

Data volume kendaraan (LHR) diambil dari pengamatan langsung di Jalan raya Wongsorejo kabupaten Situbondo (Puskesmas Wongsorejo) pada hari Senin - selasa tanggal 23-24 Mei 2018 pada pukul 06.00 s/d 06.00 WIB (24 jam), diperoleh hasil sebagai berikut :

Tabel .4.1 Volume Kendaraan (LHR) **Tahun 2018**

No	Jenis Kendaraan	Arah	(smp)	Jumlah
140	Jenis Kendaraan	Banyuwangi	Situbondo	Juman
1	Sepeda Motor,roda 3,vespa	2801 2744		5545
2	Kendaraan ringan mobil pribadi,pick up,mobil box,mobil hantaran.	1362	1382	2744
3	Bus	444	436	880
4	Truck 2 as	862	851	1713
5	Truck 3 as	355	381	736
6	Truck Gandengan,semi/trailer	290	283	573
7	Kendaraan tak bermotor	49 61		110
Juml	ıh	6163	6138	12301

Sumber: Pengamatan 2018

Maka nilai C adalah:

C = 3100x1,00x1,00x1,00x1.00

C = 3100 smp/jam

Dengan jumlah kendaraan hasil pengamatan langsung tahun 2018 = 512.5417smp/jam dan lama pengamatan 24 jam, maka Qsmp:

Tabel. 4.2 Tabel Perhitungan Qsmp tahun 2018

No	Jenis Kendaraan		Jumlah/	emp	Qsmp
			Jam	MKJI 97	2018
1	Sepeda motor, roda 3, vespa		231.041	0.25	57.76025
2	Kendaraan ringan, mobil pribadi, pick	up,	114.333	1	114.333
	mobil box, mobil hantaran.				
3	Bus		36.666	1.2	43.9992
4	Truk 2 as		71.375	1.2	85.65
5	Truk 3 as		30.666	1.2	36.7992
6	Truk Gandengan, semi/trailer		23.875	1.2	28.65
7	Kendaraan tak bermotor		4.583	0.85	3.89555
Jum	lah				198.994
Sumb	per : Hasil perhitungan, 2018				

Sumber: Hasil perhitungan, 2018

Hasil perhitungan C smp/jam = 3100 smp/jam dan Q smp = 198.994smp/kendaraan/jam, Sehingga didapat DS, sebagai berikut:

DS = Qsmp/C = 198.994/3100

= 0.064192 smp/kendaraan/jam(A)

Tabel 4.3 Nilai DS

Tingkat pelayanan	Kriteria	Nilai
A	Kondisi arus dengan kecepatan tinggi dan volume lalu- lintas rendah.Pengemudi dapat memilih kecepatan yang diinginkannya tanpa hambatan	0.00-0.19
В	Dalam zone harus stabil.Pengemudi memiliki kebebasan yang cukup untuk memilih kecepatannya	0.20-0.44
С	Dalam zone arus stabil pengemudi dibatasi dalam memilih kecepatannya	0.45-0.74
D	Mendekati arus tidak stabil dimana hampir seluruh pengemudi akan dibatasi volume pelayanan berkaitan dengan kapasitas yang dapat ditolerir (diterima)	0.75-0.84
Е	Volume arus lalu-lintas mendekati atau berada pada kapasitasnya.Arus adalah tidak stabil dengan kondisi yang sering berhenti	0.85-1.0
F	Arus yang sering dipaksakan atau macet pada kecepatan- kecepatan yang rendah.Antrian yang panjang dan terjadi hambatan-hambatan yang besar	Lebih besar dari 1.0

Sedangkan untuk DS tahun 2038:

No	Jenis Kendaraan	LHR	i=5%	LHR 2038
		2018	(1+0.05)^20	Qsmp
1	Sepeda motor, roda 3, vespa	231,0417	2,6532977	613,0224
2	Kendaraan ringan, mobil pribadi, pick up, mobil box, mobil hantaran.	114,3333	2,6532977	303,3603
3	Bus	36,6667	2,6532977	97,28767
4	Truk 2 as	71,375	2,6532977	189,3791
5	Truk 3 as	30,6667	2,6532977	81,36788
6	Truk Gandengan, semi/trailer	23,875	2,6532977	63,34748
7	Kendaraan tak bermotor	4,58333	2,6532977	12,16094
Jumlah				1359,926

DS = Qsmp/C = 1359,926/3100

= **0,438686** smp/ kendaraan/jam (A)

Tingkat pelayanan	Kriteria	Nilai
A	Kondisi arus bebas dengan kecepatan tinggi dan volume lalu-lintas rendah. Pengemudi dapat memilih kecepatan yang diinginkannya tanpa hambatan	0.00-0.19
В	Dalam zone harus stabil. Pengemudi memiliki kebebasan yang cukup untuk memilih kecepatannya	0.20-0.44
)	Dalam zone arus stabil pengemudi dibatasi dalam memilih kecepatannya	0.45-0.74
D	Mendekati arus tidak stabil dimana hampir seluruh pengemudi akan dibatasi volume pelayanan berkaitan dengan kapasitas yang dapat ditolerir (diterima)	0.75-0.84
E	Volume arus lalu-lintas mendekati atau berada pada kapasitasnya. Arus adalah tidak stabil dengan kondisi yang sering berhenti	0.85-1.0
F	Arus yang sering dipaksakan atau macet pada kecepatan-kecepatan yang rendah. Antrian yang panjang dan terjadi hambatan-hambatan yang besar.	Lebih besar dari 1.0

Sumber: Warpani, 1985: 62

Dari hasil perhitungan DS = 0.064192(A) adalah kondisi arus bebas dengan kecepatan tinggi dan volume lalu lintas rendah. Pengemudi dapat memilih kecepatan yang diinginkannya hambatan.Maksud disini Pengemudi dapat mengendarai kendaraan dengan kecepatan yang dipilih (cepat atau pelan).

4.3 Angka Ekivalen (E),dari masingmasing kendaraan:

Angka Ekivalen masing - masing Golongan Beban Sumbu / as kendaraan, dimana setiap kendaraan mempunyai perbedaan berat : Adapun perhitungan sebagai berikut:

-Kendaraan ringan (2 ton):

As depan = 1 ton = 0.0002

As belakang = 1 ton =
$$0.0002$$
 + 0.0004

-Kendaraan Bus (8 ton):

As depan 34% x 8 = 2,75 ton,

 $E = (2720/8160)^4 = 0.0123$

As belakang : $66\% \times 8 = 5.28 \text{ ton}$

 $E = (5280/8160)^4 = 0.1753$

Maka,E = 0.0123+0.1753 = 0.1876

-Kendaraan Truk 2 as (berat total 13 ton):

As depan $34\% \times 13 = 4.42 \text{ ton}$,

 $E = (4420/8160)^4 = 0.0861$

As belakang : $66\% \times 13 = 8.58 \text{ ton}$

 $E = (8580/8160)^4 = 1,223$

Maka, E = 0.0861 + 1.223 = 1.3084

-Kendaraan 3 as (berat total 20 ton):

As depan = $25\% \times 20 = 5 \text{ ton}$

 $E = (5000/8160)^4 = 0.1409$

As belakang = $75\% \times 20 = 15 \text{ ton}$

 $E = (15000/8160)^4 = 0,982$

Maka, E = 0,1409 + 0,982 = 1,229

-Truk + Gandengan (berat total 23 ton)

As depan = $17\% \times 23 = 3.91 \text{ ton}$

 $E = (3910/8160)^4 = 0.0527$

As belakang = $35\% \times 23 = 8,05 \text{ ton}$

 $E = (8050/8160)^4 = 0.9471$

Gandengan = $24\% \times 23 = 5.25 \text{ ton}$

 $E = (5250/8160)^4 = 0,4188$

Maka,E=0.0527+0.9471+0.4188=1.4186

-Kendaraan Semi trailer/trailer (berat total 25 ton):

As depan = $40\% \times 25 = 10,00 \text{ ton}$

 $E = (10000/8160)^4 = 2,255$

As belakang = $60\% \times 25 = 15 \text{ ton}$

 $E = (15000/8160)^4 = 11,418$

Maka,E = 2,441 + 11,418 = 13.859

Tabel 4.10Besaran E pada kendaraan ringan dan berat

Jenis Kendaraan	Angka Ekivalen (E)
Mobil Penumpang	0,0004
Bus	0,1876
Truck 2 Sumbu Ringan	1.3084
Truck 3 Sumbu	1,2290
Truck Gandeng	1,4186
Semi trailer/traler	13.859

Sumber: Bina Marga, 1987

4.4 Koefisien Distribusi Kendaraan (C)

Jumlah 2 jalur /2 arah :

Kendaraan Ringan < 5 ton C = 0.50

Kendaraan Berat ≥ 5 ton C = 0.50

4.5 Lintas Ekivalen Permulaan (LEP) ; \sum LHR (1+i)¹x C x E,

diambil Tahun 2018, sebagai berikut:

Ī	No	Jenis Kendaraan	Į.	<u>rah</u>			Jumlah/	C=0.50	Е	LEP
			Situbondo	Banyuwangi	Jumlah	Jam	Jam		Beban	2018
	1	Kendaraan ringan, mobil pribadi, pick up,	1362	1382	2744	24	114.3333	0.5	0.0004	0.022867
		mobil box, mobil hantaran.								
	2	Bus	444	436	880	24	36.66667	0.5	1.31	24.01667
	3	Truk 2 as	862	851	1713	24	71.375	0.5	12.29	438.5994
	4	Truk 3 as	B55	381	736	24	30.66667	0.5	12.29	188.4467
	5	Truk Gandengan, semi/trailer	290	283	573	24	23.875	0.5	14.187	169.3573
		<u>Jumlah</u>					162.5833			820.4429

Sumber : Analisa Data. 2018

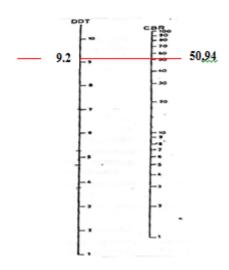
No	Jenis Kendaraan	Arah				Jumlah/	į=5%	LHR
		Situbondo	Banyuwangi	Jumlah	Jam	Jam	(1+0.05)^20	2038
1	Kendaraan ringan, mobil pribadi, pick up, mobil box, mobil hantaran.	1362	1382	2744	24	114.3333	2.6532977	303.3604
2	Bus	444	436	880	24	36.66667	2.6532977	97.28758
3	Truk 2 as	862	851	1713	24	71.375	2.6532977	189.3791
4	Truk 3 as	355	381	736	24	30.66667	2.6532977	81.3678
5	Truk Gandengan, semi trailer	290	283	573	24	23.875	2.6532977	63.34748
	Jumlah							734.7424

Perhitungan Lintas Ekivalen Akhir (LEA): 2038

No	Jenis Kendaraan	LHR	C=0.50	E	LEA
		2038		Beban	2038
1	Kendaraan ringan, mobil pribadi, pick up, mobil box, mobil hantaran.	303.3604	0.5	0.0004	0.060672
2	Bus	97.28758	0.5	1.31	63.72336
3	Truk 2 as	189.3791	0.5	12.29	1163.735
4	Truk 3 as	81.3678	0.5	12.29	500.0051
5	Truk Gandengan, semi/trailer	63.34748	0.5	14.187	449.3553
	Jumlah				2176.818

Sumber : Analisa Data, 2018

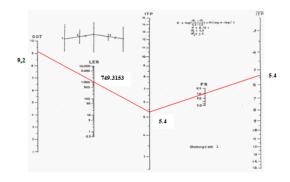
4.7 Lintas Ekivalen Tengah (LET)untuk 20 tahun :


LET =
$$\frac{1}{2}(LEP + LEA)$$

= $\frac{1}{2}(840.4429 + 2176.818)$

= 1498.63065

4.8 Lintas Ekivalen Rencana (LER)


4.9 Daya Dukung Tanah Dasar (DDT)

Pada kekuatan konstruksi perkerasan jalan sangat tergantung dari sifat - sifat dan daya dukung tanah (DDT) dasar. Dari bermacam - macam cara pengerjaan untuk menentukan kekuatan tanah dasar, yang umum dipakai adalah cara CBR (California Bearing Ratio). CBR adalah perbandingan antara beban penetrasi suatu bahan terhadap bahan standar dengan kedalaman dan kecepatan penetrasi yang sama.Daya dukung tanah ditentukan berdasarkan grafik korelasi antara nilai **CBR** tanah dasar = 57.485 % (Sumber Bina Marga, 2016). Grafik nilai korelasi CBR dan DDT dapat dilihat pada Gambar berikut:

Grafik nilai korelasi CBR dan DDT

Perhitungan berikutnya dengan memperhatikan Nomogram Indeks Tebal Perkerasan (ITP), pada Gambar dibawah ini.

Monogram ITP

Dengan LER = 749.3153 ditemukan Indek Pada Permukaan dengan Umur rencana (IP) sebesar 2.0 - 2.5.

4.10 Penentuan Indek Tebal Perkerasan

Pada Indeks Tebal lapisan perkerasan dinyatakan dengan rumus, sebagai berikut:

$$ITP = a1.D1 + a2.D2 + a3.D3$$

Dimana:

a1, a2, a3 = Koefisien kekuatan relatif.

D1,D2,D3 = Tebal masing - masing perkerasanKarena yang dicari adalah tebal masing-masing lapisan perkerasan, maka ITP diperoleh dari nomogram ITP.

$$ITP = a1D1+a2D2+a3D3$$

$$5.4 = (0.35xD1)+(0.10x20)+(0.12x10)$$

$$5.4 = (0.35D1)+2.0+1.20$$

$$D1 = 5.4 - 3,20/0.35$$

$$D1 = 6.3 \text{ Cm}$$

D1 = 6,3 cm (LAPEN/aspal macadam,HRA,asbuton,LASTON) D2 = 20 cm (Batu pecah CBR) D3 = 10 cm (Batu sirtu)

Lapisan Perkerasan

4.11 Perhitungan Perkerasan Lentur Bina Marga 2013

Perhitungan perkerasan lentur dengan metode Bina Marga 2013, langkahlangkahnya sebagai berikut :

- a. Penetapan Umur Rencana (UR) = 20 tahun
- b. Klasifikasi Kendaraan dan Nilai VDF standar
- c. Menghitung ESA 20, dengan pertumbuhan lalu lintas (i) = 5 %
- d. Menghitung Faktor pengali pertumbumhan lalu lintas (R)
- e. Nilai Multi Traffic Multiplier (TM) = 1.8 2.0
- f. Menentukan Faktor Distribusi Lajur (DL)
- g. Perhitungan CESA4, CESA5 dan ESA 20 tahun
- h. Pemilihan Jenis Perkerasan
- i. Solusi Desain 2 Pondasi Jalan minimum
- j. Desain perkerasan lentur opsi biaya minimum
- k. Tebal lapisan perkerasan ACWC, ACBC, CTB dan LPA (struktur perkerasan).

Adapun perhitungan sebagai berikut :

1. Umur Rencana = 20 tahun (direncanakan), dimana pada Manual Perkerasan jalan No.02/M/BM/2013 halaman 9, yaitu Lapisan lentur berbutir dan CTB.

Lapisan	Elemen Perkerasan	Umur Rencana (Tahun)
Perkerasan		
Perkerasan Lentur	Lapisan atas dan lapisan berbutir dan CBT	(20)
	Pondasi jalan	
	Semua lapisan jalan untuk area yang tidak	
	diijinkan sering ditinggikan akibat	
	pelapisan ulang, missal : jalan perkotaan,	40
	underpass, jembatan, torowongan	40
	Cement Treateed Based	
Perkerasan kaku	Lapis pondasi atas, lapis pondasi bawah,	
	lapis pondasi semen dan pondasi jalan	
Jalan Tanpa	Semen elemen	Minimum 10
Penutup		Minimum 10

Sumber: Bina Marga 2013

2. Klasifikasi Kendaraan dan Nilai

VDF4 standar:

JENIS KENDARAAN	VDF4
Kendaraan ringan (2 ton)	0.3
Bus Kecil	0.3
Bus Besar	0.7
Truk sumbu 2 as	0.8
Truk sumbu 3 as (berat)	1.6
Truk berat (Gandengan)	
Trailer	7.3

Sumber: Bina Marga, 2013

3. Pertumbuhan Lalu Lintas (Tabel

Faktor Pertumbuhan lalu lintas Tahun

2011 – 2020) sebesar 5 % (untuk jalan

Arteri/perkotaan)

	2011 – 2020	>2021 - 2030
Arteri dan Perkotaan (%)	(5)	4
Kolektor rurel (%)	3,5	2,5
Jalan Desa (%)	1	1
Sumber : Bina Marga. 2	2013	

4. Perhitungan R:

i = 0.05 (5%)

UR= 20 Tahun

 $R=(1+0.01i)^{V}UR - 1$

 $R=(1+0.0005)^20-1$

R=1.00954287129-1:0.0005

R= 0.009542871: 0.0005

R= 19.10857422

5.Nilai Multi *Traffic Multiplier* (TM) = 1.8 – 2.0, disini diambil rata-rata yaitu 1.9

6. Menentukan DL = 80%, dengan 2 lajur setiap arah (Tabel Faktor Distribusi Lajur)

Jumlah Lajur	Kendaraan Niaga pada lajur desain			
setiap arah	(% terhadap populasi kendaraan niaga)			
1	100			
2	80)			
3	60			
4	50			

Sumber: Bina Marga 2013

7.Perhitungan CESA4, CESA5 dan ESA20

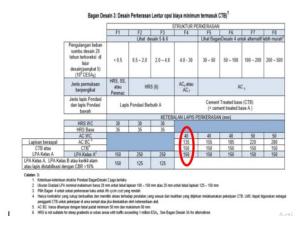
Jumlah Kendaraan Tahun 2018 per jam

No	Jenis Kendaraan	Arah				Jumlah/
		Situbondo	Banyuwangi	Jumlah	Jam	Jam
1	Sepeda motor, roda 3, vespa	2801	2744	5545	24	231.0417
2	Kendaraan ringan, mobil pribadi, pick up, mobil box, mobil hantaran.	1362	1382	2744	24	114.3333
3	Bus	444	436	880	24	36.66667
4	Truk 2 as	862	851	1713	24	71.375
5	Truk 3 as	355	381	736	24	30.66667
6	Truk Gandengan, semi/trailer	290	283	573	24	23.875
7	Kendaraan tak bermotor	49	61	110	24	4.583333
Juml	ah	6163	6138	12301	24	512.5417

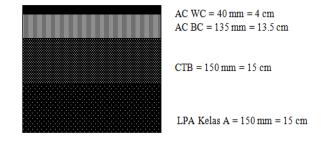
8.Perencanaan 20 tahu dengan perkembangan lalu lintas (i) = 5% = 0.005

No	Jenis Kendaraan	LHR 2018	(1+i)^20 2.653298	Jumlah LHR 2038
1	Sepeda motor, roda 3, vespa	231.0417	2.653298	613.02241
2	Kendaraan ringan, mobil pribadi, pick up, mobil box, mobil hantaran.	134.3333	2.653298	356.42624
3	Bus	36.66667	2.653298	97.287591
4	Truk 2 as	71.375	2.653298	189.37912
5	Truk 3 as	30.66667	2.653298	81.367797
6	Truk Gandengan, semi/trailer	23.875	2.653298	63.347483
7	Kendaraan tak bermotor	4.503333	2.653298	11.948683
Jumlah				1412.7793

Sumber: Hasil pengamatan dan hitungan, 2018


No	Jenis Kendaraan	LHR 2018	VDF4	ESA4 (VDF4*Jumlah per hari)	CESA4 (ESA4*R*365*DL)	ESA5 (CESA4*TM)
1	Kendaraan ringan,mobil pribadi,pick up,mobil box,mobil hantaran.	114.3333	0.3	34.29999	191378.029	3636182.551
2	Bus	36.66667	0.7	25.666669	143208.1037	143208.1037
3	Truck 2 as	71.375	0.8	57.1	318591.5056	6053238.606
4	Truck 3 as	30.6667	1.6	49.06672	273769.5306	5201621.082
5	Truck Gandengan,semi/trailer	23.875	7.3	174.2875	972443.3806	18476424.23
Juml:	ih .					29.731.28392

Sumber: Hasil pengamatan dan hitungan, 2018


9. Solusi Desain 2 Pondasi Jalan minimum

10.Desain perkerasan lentur

11. Tebal lapisan perkerasan AC WC, AC BC, CTB dan LPA (struktur perkerasan).

Struktur perkerasan

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Pada penelitian Skripsi ini untuk analisa perencanaan,pengamatan dan perhitungan dengan Perbandingan Metode Bina Marga 1987 dan 2014 terhadap datadata yang ada,maka penyusun dapat mengambil beberapa kesimpulan sebagai berikut:

1. Kondisi kinerja pada ruas jalan raya kelas I (propinsi) KM.267 - KM.269 Kecamatan Wongsorejo Kabupaten Banyuwangi berdasarkan survey tanggal 23-24 Mei di dapat volume lalu-lintas tahun 2018 = 512,54 kendaraan/jam, didapat DS = 0.06419

smp/kendaraan/jam dengan tingkat pelayanan (A) yaitu kondisi arus dengan kecepatan tinggi dan volume lalu-lintas rendah. Pengemudi dapat kecepatan memilih diinginkannya tanpa hambatan. Sedangkan untuk peramalan kondisi lalu-lintas dengan asumsi i = 5% maka didapat Q = 1359,926 kendaraan/jam dengan DS tahun 2038 yaitu 0,438686 dengan tingkat pelayanan (B) adalah dalam zone harus stabil pengemudi memiliki kebebasan yang cukup untuk memimilih kecepatannya.

2. Untuk perhitungan tebal perkerasan lentur metode Bina Marga 1987 dengan Q = 198,994 CBR=50,94% didapat nilai ITP = 5,4. sebagai berikut:

Hasil perencanaan tebal perkerasan lentur dengan metode Bina Marga 1978 di dapat :

- (LAPEN/aspal macadam,HRA,asbuton,LAS TON) = 6,3 cm
- ➤ Lapisan Pondasi Atas (Batu pecah CBR) = 20 cm
- Lapisan pondasi Bawah (Batu sirtu)
 = 10 cm

Untuk hasil perhitungan dengan Metode Bina Marga 2013, didapat :

- ➤ AC WC = 4 cm
 ➤ AC BC = 13,5 cm
 ➤ CTB = 15 cm
 ➤ LPA Kelas A = 15 cm
- 3. Hasil perhitungan tebal perkerasan lentur kedua metode tersebut di dapat selisih setebal 11,8 cm (lebih tebal metode Bina Marga 2013).

5.2 Saran

Berdasarkan kesimpulan diatas,maka penyusun akan menyampaikan

beberapa saran dan harapan agar dapat digunakan sebagai bahan masukan (refrensi) dalam rangka mengupayakan peningkatan kinerja jalan pada ruas jalur Pantura Kecamatan Wongsorejo Kabupaten Banyuwangi khususnya KM.267 – KM.269. Adapun saran yang Penyusun sampaikan sebagai berikut :

- 1. Perlu adanya perhitungan ulang pada tebal perkerasan baik dengan metode Bina Marga tahun 1987 atau 2013. Hal ini dikarnakan kendaraan yang melewati jalur tersebut terdapat kendaraan berat (Jawa-Bali).
- 2. Perlunya penegakan peraturan untuk beban angkutan (tonase) pada kendaraan berat pada jalur Pantura Kecamatan Wongsorejo Kabupaten Banyuwangi khususnya KM.267 KM.269.

DAFTAR PUSTAKA

Alamsyah, Alik Ansyori, Ir, MT., Rekayasa Jalan Raya , Universitas Muhammadiyah Malang Press, Malang, 2001

Bina Marga 2013.

MKJI, Jakarta, 1997

S. Hendratingsih.S, Stake Out Jalan, ITB. Bandung, 1986

Taufan Abadi, Route Surveying dan Masterplan, Unmuh Jember, 2016

....., Ilmu Ukur Tanah, Unmuh Jember, 2005

Tumewu, Lien, Rote Survey , ITB, Bandung, 1987

Direktorat Jenderal Bina Marga Dep. PU dan TL., Tata Cara Perencanaan Geometrik Jalan Antar Kota, Jalan No. 038/TBM/1997, Jakarta, 1997.