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Abstract: The growth of ecommerce has triggered online reviews as a rich source of product
information. Revealing consumer sentiment from the reviews through Sentiment Analysis (SA) is an
important task of online product review analysis. Two popular approaches of SA are the supervised
approach and the lexicon-based approach. In supervised approach, the employed machine learning
(ML) algorithm is not the only one to influence the results of SA. The utilized text features also
handle an important role in determining the performance of SA tasks. In this regard, we proposed
a method to extract text features that takes into account semantic of words. We argue that this
semantic feature is capable of augmenting the results of supervised SA tasks compared to commonly
utilized features, i.e., bag-of-words (BoW). To extract the features, we assigned the correct sense of
the word in reviewing the sentence by adopting a Word Sense Disambiguation (WSD) technique.
Several WordNet similarity algorithms were involved, and correct sentiment values were assigned
to words. Accordingly, we generated text features for product review documents. To evaluate
the performance of our text features in the supervised approach, we conducted experiments using
several ML algorithms and feature selection methods. The results of the experiments using 10-fold
cross-validation indicated that our proposed semantic features favorably increased the performance
of SA by 10.9%, 9.2%, and 10.6% of precision, recall, and F-Measure, respectively, compared with
baseline methods.

Keywords: sentiment analysis; product reviews; machine learning

1. Introduction

With the rapid growth of ecommerce platforms for online shopping, more and more customers
share their opinions about products on the internet. This fact has generated a huge amount of opinion
data within the platform [1]. The opinion data has then emerged as a valuable and objective source of
product information for both customers and companies. For customers, it helps them by recommending
that they buy a certain product [2]. For companies, it can help them in evaluating the design of a
product [3] based on the analysis of user generated content (UGC), i.e., product reviews describing
the user’s experience [4]. With the quantity of the data, manual processing is not an efficient task.
Alternatively, a big data analytics technique is necessary [5]. Sentiment Analysis (SA) has arisen in
response to the necessity of processing the huge data in speed [6]. SA is a computational technique
to automate the extraction of subjective information, i.e., opinion of customers with respect to a
product [7]. For that reason, this study is important.

One of the most popular methods employed for SA tasks is the machine learning (ML)-based
method [8], i.e., a supervised approach employing an ML algorithm. Although the role of the ML
algorithm is important, it is not yet the only factor that determines the performance of SA. As a text
classification task, another important factor influencing the SA result is the employed text features [9].
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Semantic features are considered important for augmenting the result of SA tasks [10] by providing
correct sense of a word according to its local context, i.e., sentence. Providing the correct sense of
words means providing correct sentiment value that is important in extracting a robust feature set for
supervised SA. The best we know, recent lexicon based approaches of SA studies that concern semantics
of words, like the work of [11] and [10], have not been evaluated in a supervised environment.

Saif [11] has considered semantics of words by proposing a method called Contextual Semantics.
The study introduced SentiCircle, which adheres to the distributional hypothesis that words that
appear in similar contexts share identical meanings. This method has outperformed baseline methods
when experimented and evaluated in several different sentiment lexicons, i.e., SentiWordNet [12],
Multi-Perspective Question Answering (MPQA) subjectivity lexicon [13], and Thelwall-Lexicon [14]
using several Twitter datasets, i.e., Obama McCain Debate (OMD), Health Care Reform (HCR), and
Stanford Sentiment Gold Standard (STS-Gold).

Another work, [10], has also concerned semantic of words. The study provided extension for [11]
by assigning prior sentiment value based on the context of the word using a graph-based Word Sense
Disambiguation (WSD) technique. The work has also introduced a similarity-based technique to
determine pivot words used in [11]. Tested in several product review domains, i.e., automotive,
beauty, books, electronics, and movies, the result of this study has outperformed baselines in several
performance metrics, i.e., precision, recall, and F-Measure. The result of [11] and [10] have highlighted
the importance of semantics in SA tasks.

Meanwhile, other studies using the supervised approach commonly utilize the bag-of-words
(BoW) feature or its extension as the base of the classification task. In this paper, we extend the previous
lexicon-based approach presented in [10] to generate a set of sentiment features that is capable of
capturing the semantics of words. The feature set was evaluated in a supervised environment.

Referring to the previously described research gap, the purposes for this study comprised:

1.  Augmenting the results of supervised SA tasks for online product reviews by proposing a method
for extracting sentiment features that takes into account semantics of words. The proposed
method is the extension of [10].

2. Evaluating the semantic features in various ML algorithms and feature selection methods.

3. Finding the best set of the features using several feature selection methods.

In assigning the correct sense of the words in a review sentence, an adapted WSD method was
used. In this method, the sense is picked from the WordNet lexical database. To calculate the numeric
value of the feature, one of three sentiment values of the sense, i.e., positivity, negativity, and objectivity,
is then picked from the SentiWordNet database [12]. Employing several WordNet similarity algorithms,
we present a method to generate a semantic feature set of words. To evaluate the performance of our
proposed semantic features, several ML algorithms and feature selection methods were employed.
The employed ML algorithms and feature selection methods are implemented in WEKA, an open
source tool containing algorithms for data mining applications [15]. The results of these experiments
using 10-fold cross-validation indicated that our proposed semantic features favorably enhanced the
performance of SA in terms of precision, recall, and F-Measure. The rest of this manuscript is organized
in the following sections. Section 2 explores the most recent related study that has previously been
done. Section 3 describes the method for extracting semantic features of words, including the formulas
that are introduced. We explain the scenario of the experiments and the results in Section 4. The results
of the experiments are discussed in Section 4. Finally, we highlight the effectiveness of our proposed
method in Section 5.

2. Related Work

The expansion of online shopping has triggered consumer to express their opinion about a product
they have purchased on ecommerce platform. SA is an efficient text mining technique to extract the
opinion from online product reviews [16]. Two types of approaches that is commonly employed to
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perform SA task, i.e., supervised approach and lexicon based approach [17]. Supervised approaches
make use of labeled training data to learn the model. Using an ML algorithm, the model is then
performed to test the dataset. Using Hybrid ML approach, Al Amrani [18] performed SA on an
Amazon review dataset. A number of decision trees at randomly selected features were firstly picked
to forecast the class of test dataset. Support Vector Machine (SVM) was then used to maximize the
margin that separates two classes. Since RF was not sensitive to input, the default parameters were
used for each classifier. The method was applied to the Amazon review dataset.

To optimize the SA task, Singh [19] employed four ML classifiers, i.e., Naive Bayes, J48, BFIree,
and OneR. NLTK and bs4 libraries were used for preprocessing of raw text. Using three manually
annotated datasets, i.e., Woodlan’s wallet, digital camera reviews, and movie reviews from IMDB, the
robustness of the classifiers was compared. WEKA 3.8 was used for implementing the classifiers. The
results of the experiment confirmed that OneR was the most prominent in accuracy.

Conditional Random Field (CRF) and SVM was employed for sentiment classification of online
reviews [16]. CRF was used to extract emotional fragment of the review from a Unigram features of the
text. SVM transformed data that is not linearly separable into linearly separable dataset in the feature
space through nonlinear mapping. The proposed method was evaluated using Chinese online reviews
from Autohome and English online reviews from Amazon. To segment the review, the jieba library
of Python was employed. The results of the experiment indicated that average accuracy achieved
was 90%.

A study formed a classifier ensemble consisting of Multinomial Naive Bayes, SVM, Random Forest,
and Logistic Regression to improve the accuracy of SA. The utilized feature was BoW represented
by a table in which the column represents the term of the document, and the values represent their
frequencies. The sentiment orientation was determined using majority voting and the average class
probability of each classifier. Using four benchmarks of the Twitter dataset, i.e., Sanders, Stanford,
Obama-McCain Debate, and HCR, the experiment revealed that the method can improve the accuracy
of SA tasks on Twitter.

Mukherjee [20] optimized the SA approach for product reviews by developing a system to extract
both potential product features and the associated opinion words. In terms of SA tasks, product features
extracted in this work are actually aspect. The pair of product features and their associated opinion
words was extracted by making use of grammatical relation provided by the Stanford Dependency
Parser. The evaluation was conducted using two datasets from [21,22]. The system outperformed
several baseline systems. Using two scenarios of the experiment, i.e., rule-based classification and
supervised classification using SVM, the results of the study confirmed that the supervised classification
significantly outperformed the Naive rule-based classification.

Meanwhile, a lexicon-based SA approach relies on a pre-built Sentiment Lexicon, i.e., a pre-built
list of sentiment terms with their associated sentiment value that is publicly available, e.g., Opinion
Lexicon, General Inquirer, and SentiWordNet [12]. The sentiment of the term’s overall document
is then aggregated to determine its sentiment orientation. The main challenge of the lexicon-based
approach is to improve a term’s sentiment value with respect to a specific context [23] since the same
term can have different sentiment values when it appears in different contexts [24].

In that regard, Saif [11] has proposed a method to learn sentiment orientation of words from
their contextual semantics. Based on a hypothesis that words appearing in similar contexts tend to
share similar meanings, the work proposed a method called SentiCircle. The method was tested on
several benchmarks of the Twitter dataset. The results of the experiment indicated that SentiCircle
outperformed several baseline methods.

A study has improved the implementation of SentiCircle in the online review dataset by considering
semantics of words [10]. The study argued that the result of SentiCircle is valid only if the prior
sentiment value of words is also valid so that 0 of SentiCircle will adjust sentiment value of words
in the right direction. Semantics of words is extracted using a WSD technique. The sentiment value
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of words was picked from SentiWordNet. The method has been proven more robust against several
baseline methods.
From the previously described recent related works, several insights can be highlighted as follows:

1. BoW is a common text features utilized for supervised SA tasks. To show the robustness of our
proposed features against BoW, we will compare the performance of our proposed features with
two baselines of BoW, i.e., Unigram (Baseline 1) and Bigram (Baseline 2).

2. Since semantics has the potential to enhance the performance of SA, we extent a lexicon-based
method [10] to extract text features that capture semantics of words based on its local context,
i.e., sentence to provide correct sentiment value of words. We evaluate the performance in a
supervised environment. We train the model for several ML algorithms, i.e., Naive Bayes, Naive
Bayes Multinomial, Logistic, Simple Logistic, Decision Tree, and Random Forest.

3. We also apply the feature selection method to find the best set of our features.

3. Proposed Method

All steps carried out in this study are described in Figure 1. Step 1 was adopted from [13], which is
an extension of [14]. This technique is called WSD. The aim of Step 1 was to assign a correct sentiment
value to the words according to their contextual sense related to different neighboring words since the
same words can appear in different parts of a text and may reveal different meanings, depending on
the neighboring words. This problem is called polysemy. As shown in Figure 2, polysemy is a word
with the same word form (WF) but a different meaning (WS). Some examples of polysemy can be seen
in Table 1.
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Figure 1. Proposed method for extracting semantic features.
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As shown in Table 1, the same sentiment word that appears in different review sentences potentially
has a different sentiment orientation or value. This issue may interfere with the result of the SA. To
address this problem, we employed a general purpose sentiment lexicon, namely SentiWordNet [4].
SentiWordNet specifies three sentiment values, namely positivity, negativity, and objectivity, to each
synset of WordNet. More about SentiWordNet can be found at https://github.com/aesuli/sentiwordnet.

WF, WE,

WF, WF,
ws, | &y WD
ws, E;,
A v Polysemy

3 Synonymy
WSin Enn

Figure 2. The different between polysemy and synonymy:.

Table 1. Example of polysemy.

Sentence Sense Sentiment Orientation
The girl runs to the school. move fast on foot Neutral
He runs the multinational company direct or control Positive
The land around here is flat. having no variation in height Neutral
The party is a bit flat. uninteresting, boring Negative
I enjoy the resolution of the screen. get pleasure from Positive
The company enjoys big profit. have benefit from Neutral

In the pre-processing step, stopword removal, stemming, part of speech (POS) tagging, and
filtering were conducted. In the implementation, the Stanford POS tagger library was used. POS
tagging is necessary to pick the correct sense of the words from the WordNet collection. In the filtering
step, we left in only verbs, adjectives, and nouns. The local neighborhood used as the context for the
words was a review sentence. Therefore, the processing step of WSD was done on a sentence basis.

After pre-processing (stop word removal, stemming, POS tagging, and filtering), the sense of the
words from the WordNet collection was picked. As an example of the calculation of the proposed
feature, consider the review sentence “I love the screen of the camera”. The result of the pre-processing
step can be seen in Table 2.

Table 2. Pre-processing step.

Step Result
Picking Review Sentence Ilove the screen of the camera.
POS tagging I(PRP) - love(VBP) - the(DT) - screen(NN) - of(IN) - the(DT) - camera(NN)
Filtering love(VBP) - screen(NN) — camera(NN)

After filtering, the left term is assigned to w;. In the case of the example, we have wy, w,, and ws.
We then pick the senses of w; from the WordNet database, indicated as wf , as shown in Table 3.


https://github.com/aesuli/sentiwordnet
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Table 3. Senses and their notations.

Word Notation Senses from WordNet Notation
have a great affection or liking for ws!
love w1 get pleasure from ws%
be enamored or in love with ws%’
a white or silvered surface where pictures can be projected for wsl
screen wy viewing 2
a protective covering that keeps things out or hinders sight ws%
equipment for taking photographs (usually consisting of a
camera w3 lightproof box with a lens at one end and light-sensitive film wsé

at the other)

In terms of the weighted graph, the senses of the words serve as the vertices of the graph.
Adopting [25], the edges are then generated by calculating the similarity between the vertices using
WordNet similarity measures from Wu and Palmer (WUP) [26], Leacock and Chodorow (LCH) [27],
Resnik (RES) [28], Jiang and Conrath (JCN) [29], and Lin (LIN) [30]. Adapted Lesk [31] was incorporated
to improve the result.

Suppose e% is the similarity between w? and wf. All possible similarities between the word
senses of the different words are calculated as shown in Table 4. For the implementation of WordNet
similarity, the ws4j algorithm from Hideki Shima was adapted. The tool can be downloaded at
https://ws4jdemo.appspot.com/. To select the contextual sense, the indegree score of each sense was
computed using the indegree algorithm. For example, the indegree score of wi‘ in Table 4, i.e., In(w?), is

calculated as follows: I n(w%) = eg + eg + eg + e%. In general, the indegree score of ws’ is computed
using Equation (1). The notation used in Equation (1) is described in Table 5. In Table 4, the similarity
highlights with red are the similarities between word senses on the left side of ws%, and the similarity
highlighted with green is the similarity of the word senses on the right side of ws%. The indegree scores
of all wsl]. are calculated, and the selected (contextual) sense is the sense of the word with the highest
indegree score. The contextual sentiment value of a word, i.e., cs;, is determined using Equation (2),
where f(m;) assigns three sentiment values from SentiWordNet, called cspos;, csneg;, and csneu;. In
Equation (3), u is the number of words in the processed review sentence.

Table 4. The calculation of all possible similarities between word senses of different words.

w1 w7 w3
1 2 3 1 2 1
ws; wsy ws] ws, ws; ws,
1 11 12 11
wsy ‘2 €2 5l
e ws) % 29
3 31 32 3
wsy 12 12 13
1 11
w, ws% e%
wsy “3
w 1
3 w3
Table 5. Notations used in Equation (1).
Notations Definitions
I n(wsg) indegree score of ws?
eg similarity value of word senses in the left side of ws?
0 number of words in the left side of ws?
Ik number of word senses of word wy,
e’ similarity value of word senses in the right side of ws?
p number of words in the right side of ws!

'm number of word senses of word w,,
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At the sentence level, three average sentiment values are calculated using Equations (4)—(6),

respectively.

u
.1 CSpos;
vpos = ————
u
u
Yy, csneg;
vneg = ———,
u
u
Y. q Csneu;
oney = ————
u

(4)

©)

(6)

Regarding the utilized WordNet similarity algorithm, the average value of every contextual sense
in the review document was then calculated and assigned as a feature of the review document. Three
average sentiment scores from SentiWordNet were assigned to each document review. Hence, a set of
15 contextual features was provided as the basis for the classification task. A detailed description of
the features is presented in Table 6.

Table 6. Details of the proposed features.

Feature Details
F1 Average positive score generated using WSD-WUP
F2 Average negative score generated using WSD-WUP
F3 Average neutral score generated using WSD-WUP
F4 Average positive score generated using WSD-LCH
F5 Average negative score generated using WSD-LCH
F6 Average neutral score generated using WSD-LCH
F7 Average positive score generated using WSD-RES
F8 Average negative score generated using WSD-RES
F9 Average neutral score generated using WSD-RES
F10 Average positive score generated using WSD-LIN
F11 Average negative score generated using WSD-LIN
F12 Average neutral score generated using WSD-LIN
F13 Average positive score generated using WSD-ADT
F14 Average negative score generated using WSD-ADT
F15 Average neutral score generated using WSD-ADT

For assessing the proposed features, an experiment was performed using five ML algorithms,
namely Naive Bayes, Logistic, Simple Logistic, Decision Tree, and Random Forest. We also applied
five different feature selection methods, i.e., correlation-based feature selection (CFS), correlation
attribute evaluator, information gain attribute evaluator, one rule attribute evaluator and principle
component analysis, in order to test the performance of the proposed feature set in various different
optimized combinations. For the implementation of the ML algorithms and the attribute selection
methods, we used WEKA from the University of Waikato. The toolkit can be found at https:

//www.cs.waikato.ac.nz/ml/weka/. The employed attribute selection methods are briefly overviewed
in the following paragraphs.


https://www.cs.waikato.ac.nz/ml/weka/
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3.1. Correlation Feature Selection (CES)

CFS argues that representative features are features that are highly correlated with the class, yet
uncorrelated to each other. Therefore, it measures the individual predictive ability of each subset along
with the degree of redundancy between them. CFS presents a measure called the ‘merit’ of the feature
subsets. It predicts the correlation between a composite test consisting of the summed components
and the outside variable using the standardized Pearson’s correlation coefficient [32], as shown in
Equation (7).

_ kri
k+k(k—1)r;

In Equation (7), 7 is defined as the correlation between the summed components and the outside
variable, k is the number of components, 7;; is the average of the correlation between the components

@)

and the outside variable, and 7;; is the average inter-correlation between the components.

3.2. Correlation Attribute Evaluator

This method calculates the weighted average of the overall Pearson correlation coefficient between
an attribute and its class as an indicator for ranking a set of attributes. For x € X and ¢ € C, where X is
the feature subset and C is the class, and Pearson’s correlation coefficient is given by Equation (8).

_ ?:1 (xi — E) (C,‘ - E) .
\/Z?=1 (xi = E)Z \/Z?=1 (ci— 5)2

3.3. Information Gain Attribute Evaluator

r

®)

Information gain, also called mutual information, can also reveal dependency between features by
calculating the level of impurity in a group of samples. This technique provides a ranking of attributes
by evaluating the information gain of an attribute with respect to the class. The information gain of X
for C is the class, and X is the attribute subset given by Equation (9).

IG(C|X) = H(C) - H(C|X). 9)

3.4. OneR Attribute Evaluator

The one rule attribute evaluator rates the values of the attributes based on a simple yet accurate
classifier called the one rule classifier [33], which classifies a dataset based on a single attribute, i.e., a
one-level decision tree. OneR chooses the rule with the smallest error rate from previously built rules
for every attribute in the training data.

3.5. Principle Components

The algorithm attempts to find the axis of greatest variance of the data. In the implementation,
this attribute evaluator calculates the eigenvector of the covariance matrix of the data and filters out
the attributes with the worst eigenvectors.

4. Result and Discussion

In the experiment, we used three product review datasets from Amazon Review Data provided
by Julian McAuley [23], i.e., Beauty, Books, and Movies. The dataset can be downloaded from
http://jmcauley.ucsd.edu/data/amazon/. For building the ground truth, we assigned a label of three
sentiment categories, i.e., positive, negative, and neutral, for every product review document by taking
the ‘overall’ score from the metadata of the dataset (see the sample review in Figure 3.). The datasets
with an ‘overall’ score of 1-2 were labeled as negative reviews. Meanwhile, the datasets with an
‘overall’ score of 4-5 were labeled as positive. The rest was labeled as neutral.
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{"reviewerID": "A3G6EXNMZ40RMWA",

"asin": "7806397051",

"reviewerName": "Karen",

"helpful"”: [0, 1], "reviewText": "The texture of this concealer
pallet is fantastic, it has great coverage and a wide variety of
uses, I guess it's wmeant for professional makeup artists and a
lot of the colours are of no use to me but I use at least two of
them on a regular basis, and two more occasionally, which is the
only reason I'm giving it for stars, I feel like the range of
colors is kind of a waste for me, but the product itself is
wonderful, it's not cakey, gives me a natural for and concealed
ny imperfections, therefore I highly recommend it :}",
"overall”: 4.0,

"surmary"”: "great quality"”,

"unixReviewTime": 1378425600,

"reviewTime": "09 6, 2013 "}

Figure 3. Excerpt of the dataset.

We present the results of the experiment using the three Jean McAuley Amazon datasets in
Tables 7-9. Our proposed features were evaluated using Naive Bayes, Naive Bayes, Logistic, Simple
Logistic, J48, and Random Forest. The combination of features was optimized using CFS, correlation
attribute evaluator, information gain attribute evaluator, one-rule attribute evaluator, and principle
component analysis, and then we compared the results with the full feature set. The performance
metrics of the selected features were evaluated using 10-fold cross-validation.

Table 7. Result of experiment using Beauty dataset. FS = Feature Selection; CFS = Correlation Feature

Selection; IG = Information Gain; PCA = Principal Component Analysis; Prec = precision; Rec = recall;

Fmeas = F-Measure.

FS Method  Algor Baseline 1 Baseline 2 Proposed Method
Prec Rec Fmeas Prec Rec Fmeas Prec Rec Fmeas
NB 0.768 0.735 0.750 0.737 0.708 0.722 0.817 0.648 0.714
NBM 0.853 0.853 0.853 0.708 0.708 0.708 0.800 0.855 0.827
None LOG 0.725 0.833 0.775 0.709 0.823 0.762 0.801 0.869 0.834
SLOG 0.853 0.853 0.853 0.706 0.802 0.751 0.804 0.897 0.848
DT 0.726 0.843 0.780 0.708 0.813 0.756 0.823 0.869 0.843
RF 0.807 0.853 0.802 0.769 0.833 0.784 0.847 0.883 0.860
NB 0.853 0.853 0.853 0.737 0.708 0.722 0.803 0.890 0.844
NBM 0.768 0.735 0.750 0.736 0.750 0.743 *0.897 *1.000 *0.945
CFS LOG 0.725 0.833 0.775 0.709 0.823 0.762 *0.897 *1.000 *0.945
SLOG 0.768 0.735 0.750 0.706 0.802 0.751 0.803 0.890 0.844
DT 0.853 0.853 0.853 0.708 0.813 0.756 0.803 0.890 0.844
RF 0.813 0.853 0.815 0.750 0.750 0.750 0.802 0.876 0.837
NB 0.768 0.735 0.750 0.737 0.708 0.722 0.815 0.634 0.704
NBM 0.853 0.853 0.853 0.736 0.750 0.743 0.800 0.862 0.830
CORELL LOG 0.725 0.833 0.775 0.709 0.823 0.762 0.804 0.897 0.848
SLOG 0.853 0.853 0.853 0.786 0.833 0.797 0.804 0.897 0.848
DT 0.726 0.843 0.780 0.711 0.833 0.767 0.803 0.890 0.844
RF 0.807 0.853 0.802 0.769 0.833 0.784 0.800 0.862 0.830
NB 0.768 0.735 0.750 0.737 0.708 0.722 0.809 0.821 0.815
NBM 0.853 0.853 0.853 0.708 0.708 0.708 0.804 0.897 0.848
G LOG 0.723 0.833 0.775 0.709 0.823 0.762 0.801 0.869 0.834
SLOG 0.768 0.735 0.750 0.706 0.802 0.751 0.804 0.897 0.848
DT 0.726 0.843 0.780 0.708 0.813 0.756 0.804 0.897 0.848
RF 0.807 0.853 0.802 0.769 0.833 0.784 0.802 0.876 0.837




Computers 2019, 8, 55 10 of 16

Table 7. Cont.

FS Method  Algor Baseline 1 Baseline 2 Proposed Method

Prec Rec Fmeas Prec Rec Fmeas Prec Rec Fmeas

NB 0.768 0.735 0.750 0.737 0.708 0.722 0.804 0.676 0.730
NBM 0.853 0.853 0.853 0.736 0.750 0.743 0.804 0.897 0.848
LOG 0.725 0.833 0.775 0.709 0.823 0.762 0.801 0.869 0.834

OneR SLOG 0.768 0.735 0.750 0.706 0.802 0.751 0.804 0.897 0.848
DT 0.726 0.843 0.780 0.708 0.813 0.756 0.803 0.883 0.841

RF 0.807 0.853 0.802 0.769 0.833 0.784 0.855 0.890 0.864

NB 0.726 0.843 0.780 0.708 0.813 0.756 0.818 0.855 0.835

NBM 0.726 0.843 0.780 0.745 0.813 0.771 0.804 0.897 0.848

PCA LOG 0.725 0.833 0.775 0.711 0.833 0.767 0.801 0.869 0.834

SLOG 0.781 0.843 0.796 0.754 0.823 0.777 0.804 0.897 0.848
DT 0.725 0.833 0.775 0.711 0.833 0.767 0.803 0.890 0.844
RF 0.781 0.843 0.796 0.709 0.823 0.762 0.828 0.876 0.847

Table 8. Result of experiment using Books dataset.

FS Method  Algor Baseline 1 Baseline 2 Proposed Method

Prec Rec Fmeas Prec Rec Fmeas Prec Rec Fmeas

NB 0.663 0.701 0.679 0.722 0.762 0.741 0.824 0.824 0.824
NBM 0.737 0.770 0.746 0.722 0.762 0.741 0.829 0.882 0.855
LOG 0.707 0.747 0.720 0.706 0.667 0.686 0.882 0.882 0.882

None SLOG 0707 0770 0714 0729 0810 0767 0829 0882  0.855
DT 0607 0759 0674 0706 0667 0686 0826  0.853  0.839

RE 0601 0724 0657 0729 0810 0767 0829  0.882  0.855

NB 0678 0747 0699 0779 0714 0742 0826  0.853  0.839

NBM 0678 0747 0699 0714 0714 0714 0826  0.853  0.839

CFS LOG 0707 0770 0714 0722 0762 0741  0.829  0.882  0.855
SLOG 0707 0770 0714 0722 0762 0741 0821 0794 0807

DT 0607 0759 0674 0714 0714 0714 0821 0794 0807

RE 0668 0736 0692 0706 0667 0686 0826  0.853  0.839

NB 0663 0701 0679 0722 0762 0741  0.824  0.824  0.824

NBM 0737 0770 0746 0729 0810 0767  0.829  0.882  0.855

CORELL LOG 0707 0747 0720 0706 0667 068  0.882 0882  0.882
SLOG 0707 0770 0714 0729 0810 0767  0.829 0882  0.855

DT 0607 0759 0674 0714 0714 0714 0821 0794 0807

RF 0601 0724 0657 0729 0810 0767 0817 0765  0.790

NB 0663 0701 0679 0722 0762 0741  0.824 0824  0.824

NBM 0737 0770 0746 0722 0762 0741 0829  0.882  0.855

c LOG 0707 0747 0720 0706 0667 068  0.882 0882  0.882
SLOG 0707 0770 0714 0714 0714 0714 0826 0853  0.839

DT 0607 0759 0674 0706 0667 0686  0.824  0.824  0.824

RF 0601 0724 0657 0729 0810 0767 0817 0765  0.790

NB 0663 0701 0679 0722 0762 0741  0.824  0.824  0.824

NBM 0737 0770 0746 0722 0762 0741  0.829  0.882  0.855

OneR LOG 0707 0747 0720 0706 0667 068  0.882 0882  0.882
SLOG 0707 0770 0714 0714 0714 0714 0826 0853  0.839

DT 0607 0759 0674 0706 0667 068 0826  0.853  0.839

RF 0601 0724 0657 0729 0810 0767 0829  0.882  0.855

NB 0710 0736 0720 0722 0762 0741 0829  0.882  0.855

NBM 0710 0736 0720 0706 0667 068 0826  0.853  0.839

PCA LOG 0749 0782 0754 0722 0762 0741  *0916 *0.882  *0.895

SLOG 0.769 0.793 0.729 0.792 0.762 0.776 0.826 0.853 0.839
DT 0.678 0.747 0.699 0.714 0.714 0.714 0.829 0.882 0.855
RF 0.705 0.759 0.718 0.729 0.810 0.767 0.824 0.824 0.824
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Table 9. Result of experiment using Movies Dataset.

FS Method  Algor Baseline 1 Baseline 2 Proposed Method

Prec Rec Fmeas Prec Rec Fmeas Prec Rec Fmeas

NB 0.649 0.682 0.664 0.691 0.738 0.708 0.691 0.710 0.700
NBM 0.739 0.765 0.748 0.743 0.774 0.752 0.746 0.770 0.756
LOG 0.670 0.718 0.688 0.659 0.714 0.682 0.695 0.750 0.718

None SLOG 0671 0741 0692 0613 0762 0680 0723 0800  0.736
DT 0660 0753 0685 0683 0726 0700 0723 0750  0.735

RF 0629 0718 0664 0672 0762 0698 0706 0790  0.730

NB 0765 0788 0723 0730 078 0712 0887 0920  0.903

NBM 0765 0788 0723 0743 0774 0752 *0.943  *1.000  *0.970

CFS LOG 0720 0766 0699 0615 0774 068  0.888 0937 0912
SLOG 0720 0766  0.699 0615 0774 068 0943  1.000  0.970

DT 0660 0753 0685 0613 0762 0680 0943 1000 0970

RF 0671 0741 0692 0607 0726 0661 0888 0931  0.909

NB 0649 0682 0664 0691 0738 0708 0681 0720  0.699

NBM 0739 0765 0748 0743 0774 0752 0695 0750  0.715

CORELL LOG 0670 0718 0688 0659 0714 0682 0701 0760  0.724
SLOG 0671 0741 0692 0613 0762 0680 0723  0.800  0.736

DT 0660 0753 0685 0683 0726 0700 0695 0750 0715

RF 0629 0718 0664 0672 0762 0698 0753 0780  0.763

NB 0649 0682 0664 0691 0738 0708 0753 0677 0710

NBM 0739 0765 0748 0743 0774 0752 0680 0760 0713

- LOG 0670 0718 0688 0659 0714 0682 0687 0770 0719
SLOG 0671 0741 0692 0613 0762 0680 0706 0790  0.730

DT 0660 0753 0685 0683 0726 0700 0675 0750  0.707

RF 0629 0718 0664 0672 0762 0698 0716 0780 0737

NB 0649 0682 0664 0691 0738 0708 0710 0750  0.727

NBM 0739 0765 0748 0743 0774 0752 0695 0780  0.725

OneR LOG 0670 0718 0688 0659 0714 0682 0695 0780  0.725
SLOG 0671 0741 0692 0613 0762 0680 0756 0810  0.724

DT 0660 0753 0685 0683 0726 0700 0650 0770  0.705

RF 0629 0718 0664 0672 0762 0698 0708 0770  0.730

NB 0691 0729 0706 0733 0762 0743 0723 0750  0.735

NBM 0691 0729 0706 0634 0619 0626 0810 0810  0.810

PCA LOG 0678 0729 0696 0691 0738 0708 0708 0770  0.730

SLOG 0.599 0.753 0.667 0.773 0.798 0.736 0.727 0.795 0.820
DT 0.601 0.765 0.673 0.650 0.738 0.684 0.643 0.730 0.684
RF 0.713 0.765 0.720 0.696 0.762 0.712 0.884 0.874 0.879

To investigate the role of semantic features in enhancing the result of the supervised SA method,
the performance of our proposed features was compared with a baseline feature. For the baseline,
we applied Unigram features, i.e., common features used for text classification, extracted using an
unsupervised filter from StringtoWord Vector in WEKA. In the experiment, we also applied the same
feature selection method for the baseline. For the performance metrics, precision, recall, and F-Measure
were employed. The whole experiment was conducted using 10-fold cross-validation with WEKA.
The results of the experiment are presented in Tables 7-9. We compared the result of experiment with
two baseline methods, i.e., Unigram (Baseline 1) and Bigram (Baseline 2), of BoW that are commonly
adopted for supervised SA tasks.

In Tables 7-9, we provide the experiment results for the three product review datasets, i.e., Beauty,
Books, and Movies dataset. In each table, we compare the performance of the proposed features
with two baselines, namely Unigram and Bigram, that are commonly employed for text classification
tasks. The results are grouped based on the employed feature selection method. For every feature
selection method, we applied all used ML algorithms. To indicate the best performance achieved for
precision, recall, and F-Measure, we used the asterisk symbol as presented in the Tables. For the Beauty
dataset, the best performance of the proposed features is 0.897, 1.000, and 0.945 for precision, recall, and
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F-Measure, respectively. For the Books dataset, Principal Component Analysis (PCA) achieved the best
performance by 0.916, 0.882, and 0.895 for precision, recall, and F-Measure, respectively. Meanwhile,
for the Movies dataset, features selected using CFS reached the best performance by 0.943, 1.000, and
0.970 for precision, recall, and F-Measure, respectively.

In Figure 4, we calculated the average performance of our proposed features in terms of precision,
recall, and F-Measure. Compared with the baseline feature that is commonly employed in the supervised
SA task, i.e., BOW, the extracted semantics features have favorably increased all performance metrics
of the supervised SA task, i.e., precision, recall, and F-Measure, as indicated in Figure 4. In the figure,
we present average evaluation metrics for the three datasets. The figure indicates that the proposed
semantic features outperform both Unigram and Bigram in all performance metrics. On average,
the proposed features increased precision, recall, and F-Measure by 10.9%, 9.2%, and 10.6% of those
compared to baseline methods.

0.9 -
0.85 -
0.8 -

0.75 1

0.7 A

0.65 -
Prec Rec Fmeas

m Baseline 1 Baseline 2 ® Proposed

(a) Beauty dataset

0.9 4
0.8 1
0.7
0.6 1
0.5

0.4

0.3
0.2 1
0.1 1

Prec Rec Fmeas

| m Baseline 1 = Baseline2 ® Proposed

(b) Movies dataset

Prec Rec Fmeas

| = Baseline 1 Baseline 2 mProposed

(c) Movie dataset

Figure 4. Average performance of the features compared to the baseline features on three datasets.



Computers 2019, 8, 55 13 of 16

To find the best set of the features, we calculated the average performance of our semantic features
for every feature selection method, as presented in Figure 5. The results of the experiment presented
in Figure 5 confirmed that the best semantic feature set is one that is selected using CFS, i.e., F1-6.
Features selected using PCA are in second place. We also highlight that the employed WordNet
similarity algorithms have a dominant role in determining the correct sentiment value of a term.
Assigning incorrect sentiment values results in extracting contextual features that potentially lead
to misclassification.

0.95 -
0.9
0.85
0.8
0.75 I I
0.7 o e o o —
None CFS CORELL IG OneR PCA

Prec mRec ®Fmeas

Figure 5. Average performance of semantic features for every feature selection method overall datasets.

The limitation of this study is that the performance of the adopted similarity algorithm is not
what was expected. As an example, we calculate semantic similarity of love#v#1, hate#v#1, and
like#v#1 using wup, jcn, and Ich. Naturally, we expected that love#v#1 and like#v#1 should have greater
semantic similarity than love#v#1 and hate#v#1. Sense of those words can be seen in Table 10. Yet, the
result was not what we wished, as indicated in Table 11. In the future, we plan to propose a robust
similarity algorithm to augment the result of a supervised SA task.

Table 10. Sense picked from WordNet.

Term Sense Picked from WordNet Database
love#vil have a great affection or liking for
hate#v#1 dislike intensely
like#v#1 Prefer or wish to do something

Table 11. Result of semantic similarity.

Semantic Similarity of

Love#v#1 and Hate#v#1 Love#v#1 and Like#v#1

WordNet Similarity Algorithm

wup 0.04 0.04
jen 0.06 0.07
Ich 1.95 1.94

Implications

The implications comprise practical implication for both online marketers and customers, as well
as academic implications for the researcher in the field of text processing. The results of study affirm
that our proposed SA technique can be employed to generate quantitative ratings from unstructured
text data within the product review [34]. The online marketers could, therefore, apply the technique to
foresee consumer satisfaction toward a certain product [35]. Meanwhile, for potential customers, a
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big data recommender system could possibly be built accordingly to provide recommendation about
the intended product they want to purchase [2]. The finding of this work could also be beneficial for
researchers in the field of text processing to further explore more sophisticated semantic features of
words. Previous work has also confirmed the robustness of semantic features [10].

5. Conclusions

This paper proposed a set of contextual features for SA of product reviews, generated using an
extended WSD method. Several ML algorithms were employed to evaluate the performance of the
proposed features in a supervised SA task. To find the subset that provides the best performance
metrics, several feature selection methods were applied, i.e., CFS, correlation attribute evaluator,
information gain attribute evaluator, one-rule attribute evaluator, and principle component analysis.

This study contributes to improving the performance of supervised SA tasks by proposing a
method to extract semantic features of the product review dataset. The results of the cross-validated
experiment in a supervised environment using several ML algorithms and feature selection methods
has confirmed that our proposed semantic features favorably augment the performance of SA in
terms of precision, recall, and F-Measure. Another finding of this study summarizes the robustness of
semantic feature set selected using CFS and PCA.
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