Kosjoko 44

by Kosjoko 44
PENGARUH PENERAPAN WPS (WELDING PROCEDURE SPECIFICATION) AL 6005 Tipe BUTT JOINT TERHADAP KEKUATAN SAMBUNGAN LAS AL 6061

The Effect of Application WPS (Welding Procedure Specification) Al 6005 Butt Joint Type Against Strength of Al 6061 Weld Joint

Ahmad Abi Sodik¹, Nely Ana Mufarida², Kosjoko³

¹Program Studi Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Jember
Email: ²ahmadabivesodik2@gmail.com, ³nelyana_mufarida@yahoo.com

ABSTRAK

Dokumen WPS (welding procedure specification) merupakan dokumen yang sangat penting dalam pengelasan masal di suatu industri. Maka dari itu penelitian ini bertujuan untuk mencari pengaruh penerapan WPS aluminium 6005 tipe butt joint terhadap pengelasan sambungan aluminium 6061 dengan posisi pengelasan 1G (flat) dan 3G (vertikal) serta pada ketebalan 3 mm, 5 mm, dan 8 mm dan menggunakan filler metal ER 5356. Pengelasan aluminium 6061 dilakukan oleh welder bersertifikat dengan menggunakan las GTAW (gas tungsten arc welding) atau TIG (tungsten inert gas) dengan detail sambungan pengelasan single V-butt joint sudut 60°. Pengujian material dilakukan dengan menggunakan pengujian kekuatan tarik, bending dan juga pengujian cecat dengan menggunakan radiography dan dye penetrant. Hasil penelitian ini menunjukkan bahwa pengelasan aluminium 6061 dengan menggunakan WPS aluminium 6005 dengan posisi 1G menghasilkan las yang lebih baik dibandingkan posisi 3G dari hasil pengujian cecat luar maupun dalam. Cecat porositas terjadi pada posisi pengelasan 1G dengan jumlah dan ukuran yang sangat kecil sedangkan pada posisi pengelasan 3G terjadi cecat porositas dan incomplete fusion dengan ukuran dan jumlah di luar syarat penerimaan pengujian berdasarkan ISO. Selain pengujian cecat las, hasil dari pengujian kekuatan material las yang dilakukan dengan menggunakan uji tarik dan uji tekuk juga menunjukkan kekuatan yang signifikan terjadi pada posisi pengelasan 1G baik material tebal 3 mm, 5 mm maupun tebal 8 mm.

Kata Kunci: Aluminium 6061. Aluminium 6005. Butt Joint. WPS. Las GTAW.

ABSTRACT

The document of WPS (welding procedure specification) is important document in mass welding in an industry. Therefore, this study aims to find the effect of applying aluminium WPS of 6005 type butt joint on welding joint aluminium 6061 with 1G and 3G welding positions of 3 mm, 5 mm and 8 mm thickness by using 5356 metal filler. Aluminium 6061 welding carried out by certified welder using GTAW welding (gas tungsten arc welding) or TIG (tungsten inert gas) with welding joint details of a single V-butt joint angle of 60°. Material testing was investigated by using tensile, bending strength, and defect testing using radiography and dye penetrant. The results of this study indicate that welding aluminium 6061 using WPS aluminium 6005 with a 1G (flat) position produces a weld that is better than the 3G (vertical) position as explained from the results of external and internal defects. Porosity defects occur in the welding position of 1G with a very small number and size while in the welding position 3G occurs porosity and fusion incomplete defects with sizes and quantities outside the ISO acceptance testing requirements. In addition to testing for weld defects, the strength of the weld material carried out by using tensile and bending test. It showed significant strength in the welding position of 1G both 3 mm, 5 mm and 8 mm thickness.

Key Words: Aluminium 6061. Aluminium 6005. Butt Joint. WPS. Welding GTAW
PEMBAHUAN

Perindustrian di Indonesia merupakan salah satu komponen yang penting, karena dalam semakin berkembangnya sektor industri memungkinkan perekonomian Indonesia ikut berkembang pesat dan semakin baik, sehingga membawa perubahan dalam struktur perekonomian nasional. Tuntutan untuk mengubah perekonomian dari sektor perindustrian membuat tak sedikit industri yang juga menciptakan alternatif – alternatif untuk menciptakan produk yang lebih efisien dibanding yang telah ada. Inovasi penemuan yang berlatar belakang menambah manfaat, mempermudah penggunaan, menambah layanan, mempermudah mendapatkan dan meminimalkan waktu tempuh sangat diharapkan oleh manusia di era 21 ini. Selain itu, saat ini kita hidup di era Revolusi Industri Keempat (Klaus Schwab, The Fourth Industrial Revolution, 2017). Era yang diwarnai oleh kecerdasan buatan (artificial intelligence), era super komputer, rekayasa genetika, teknologi nano, mobil otomatis, inovasi, dan perubahan yang terjadi dalam kecepatan eksponensial yang akan mengakibatkan dampak terhadap ekonomi, industri, pemerintahan, politik, bahkan membuka perlebutan atas definisi manusia itu sendiri. Era yang menegaskan dunia sebagai kampung global (Marshall McLuhan, The Gutenberg Galaxy: The Making of Typographic Man, 1962). Di Indonesia sendiri banyak sekali proyek yang menciptakan inovasi – inovasi baru baik dibidang teknologi komunikasi, informasi maupun transportasi. Salah satu proyek yang sedang berjalan saat ini adalah proyek LRT (Light Rail Transit) untuk wilayah Jabodetabek. Lintas Rel Terpadu atau disingkat LRT adalah salah satu sistem kereta api penumpang yang beroperasi di kawasan perluasan yang konstruksinya ringan dan bisa berjalan bersama lalu lintas lain atau dalam lintas keutsche (Wikipedia Indonesia). Dalam menghadapi tantangan dunia bisnis ke depan. Beberapa pembaharuan yang dilakukan oleh perusahaan kereta api adalah rangka pada carbody (rangka dalam) gerbong kereta api yang dianut memakai bahan material yang cukup bermasa tinggi (Mild Steel) kini perusahaan ini mencoba membuat kereta api yang lebih efisien dalam material carbody yaitu dengan menggunakan material aluminium. Spesifikasi aluminium secara umum yaitu sangat kuat dan memiliki ketahanan yang cukup baik terhadap penurunan suhu, tahan terhadap karat, fleksibel, tidak mudah terbakar dan tidak menghasilkan zat buangan ketika terkena panas tinggi. Aluminium sendiri termasuk material logam yang sangat ringan sehingga efektif untuk membuat komponen kereta api, dengan begitu botol kereta juga akan relatif ringan sehingga menghasilkan kecepatan yang lebih tinggi. Tetapi dibalik semua itu, logam aluminium juga mempunyai kelemahan dalam hal penyambungan di dalam jurnal penelitian karya Andrea Tri Wibowo dkk., dari Teknik Sains Universitas Diponegoro yang berjudul ‘Pengaruh Heat Treatment pada Aluminium alloy 6061-T6 dan Pengelasan Transversal Tungsten Inert Gas Terhadap Sifat Mekanik dan Struktur Mikro’ mengatakan bahwa kelemahan aluminium adalah sifat mampu las (weldability) relatif rendah dan sambungan las rentan terhadap kegagalan (failure) karena logam aluminium sangat rentan terhadap oksidasi, sehingga dalam pengelasan aluminium dibutuhkan identifikasi sambungan las dan parameter-parameter yang tepat untuk menghasilkan hasil pengelasan yang sesuai dengan yang diharapkan. Semua aspek – aspek tersebut disatukan dalam Welding Procedure Specification (WPS) sebagai panduan untuk Welder (tukang las) dalam melakukan proses pengelasan agar hasil pengelasan sesuai dengan yang telah direncanakan. WPS hanya berlaku untuk satu spesifikasi material, akan tetapi WPS dari material lain dapat di adaposisi untuk pengelasan tertentu dengan tetap melalui tahap pengujian WPS. Dalam penelitian ini akan dilakukan adopsi WPS aluminium 6005 yang telah terkualifikasi dengan baik yang akan digunakan untuk pengelasan material aluminium 6061, karena kedua material tersebut masih tergolong dalam keluarga yang sama yaitu aluminium tipe 60xx. Selain itu, kedua material aluminium ini juga memiliki karakteristik dan juga padaan yang sama.

Didalam pengerjaan proyek pembuatan carbody gerbong kereta LRT (Lintas Rel Terpadu) Jabodetabek, salah satu perusahaan kereta api mempunyai masalah pada hasil kekuatan dan struktur mikro sambungan las aluminium untuk carbody gerbong kereta. Jika WPS itu dipakai untuk pedoman pengelasan di carbody kereta, maka akan mengakibatkan ketidak kuatan pada bagian bagian carbody dan pada jangka panjang bisa merusak carbody itu sendiri, terlebih lagi akan ada resiko yang ditimbulkan karena kereta ini dirancang untuk kereta penumpang. Oleh karena itu penulis membuat rumusan masalah untuk membantu dalam menyelesaikan masalah sambungan las aluminium diantaranya : (1) Bagaimana prosedur penentuan parameter WPS (Welding Procedure Specification) sesuai standar untuk
pedoman pengelasan aluminium *carbody* gerbang kereta?
(2) Bagaimana perbedaan cacat dalam dan cacat luar pada ketebalan berbeda dan posisi pengelasan berbeda?
(3) Bagaimana perbedaan kekuatan material las pada ketebalan berbeda dan posisi pengelasan berbeda?
(4) Bagaimana pengaruh penggunaan WPS Al 6005 terhadap pengelasan material Al 6061?

Adapun tujuan dari penelitian ini adalah sebagai berikut:
(1) Melakukan identifikasi standar pengelasan untuk prosedur penentuan parameter WPS pengelasan sambungan aluminium Al 6061 *carbody* kereta.
(2) Mengetahui kecakapan dalam dan luar spesimen pengelasan.
(3) Mengetahui hasil kekuatan las dengan WPS yang telah dibuat.
(4) Mengetahui pengaruh WPS Al 6005 tipe *butt joint* terhadap kekuatan dan struktur mikro sambungan las Al 6061.

TINJAUAN PUSTAKA

Aluminium merupakan jenis logam yang sangat spesial dikarenakan pada lapisan aluminium terdapat lapisan oksidasi yang bisa melindungi dari korosi, selain itu aluminium juga banyak digunakan dalam fabricasi logam untuk beberapa transportasi termasuk kereta api karena sifatnya yang ringan dan juga memiliki kekuatan yang sangat tinggi, hal ini juga di-ebukkan oleh beberapa ahli logam sebagai berikut.

Menurut Daryanto (2009: 3), "aluminium adalah sejenis logam yang begitu keras dan begitu kuat, aluminium mempunyai berat jenis yang rendah, yakni 2,6 dan warnanya putih kebiru-biruan."

Menurut Sulianto (2005: 46), "aluminium adalah logam yang sangat ringan (berat jenis aluminium = 156 atau 1/3 berat jenis tembaga), Tahanan jenis 2,8 × 10^-6 atau 1,25 × tahanan jenis tembaga."

Aluminium 6061 T6 adalah aluminium paduan yang dapat diolah dengan kekuatan sedang hingga tinggi dengan kekuatan sebelah tinggi dari aluminium tipe 6005. Aluminium ini memiliki ketahanan korosi yang sangat baik dan kemampuan las yang sangat baik meskipun memiliki kelemahan kekuatan di zona las (HAZ). Aluminium ini memiliki kekuatan kelelahan sedang dan memiliki sifat dingin yang baik dalam temper T4, tetapi formability terbatas dalam temper T6. Kebanyakan dari material Al 6061-T6 di las menggunakan proses las GTAW dan GMAW dengan menggunakan *filler* dengan kode ER4043 dan ER5356. Aluminium murni dan aluminium paduan yang paling umum digunakan sebagai metode pengelasannya adalah menggunakan busur listrik dengan elektroda kawat yang terus menerus (dengan arus DC) atau elektroda *tungsten* permanen ditambah kawat pengisi (dengan arus AC). Busur dilindungi oleh gas argon (atau campuran gas argon-helium) untuk melindungi kolom las dan elektroda dari atmosfer sekitarnya ketika pengerjaan pengelasan dilakukan (Dewanto, Anggoro P. 1996).

Welding Procedure Specification atau spesifikasi prosedur las merupakan prosedur tertulis tentang pengelasan yang sudah terkualifikasi dengan baik untuk memberikan arahan untuk juru las dalam membuat pengelasan produk (*production weld*) sesuai persyaratan standar yang dipakai. Prosedur ini biasanya digunakan untuk penglasan produksi masal, sehingga dalam pengelasannya hanya menggunakan
satu prosedur pengelasan yang sudah terkualifikasi 7 dengan baik. WPS dapat digunakan untuk memberikan arahan kepada juru las untuk menjamin kesesuaian dengan persyaratan dari standar yang dipakai. Dalam produksi masal tidak ada pengelasan yang diizinkan tanpa kualifikasi WPS oleh Pihak Ketiga atau Badan yang dilaikai. Kualifikasi prosedur pengelasan harus memenuhi persyaratan ASME Bagian IX dan kode yang berkait. Heterogenisasi pengelasan heterogen juga harus memenuhi syarat sesuai dengan persyaratan ASME. Hasil penyambungan logam dengan logam ferrous maupun non-ferrous melalui pengelasan sangat diharapkan akan menghasilkan sambungan yang berkualitas dari segi kekuatan dan lapisan las dari bahan atau logam yang dilaik, di mana untuk menghasilkan sambungan las yang berkualitas hendaknya kedua ujung/bagian atau bagian logam yang akan diterapkan berada pada suatu bentuk kampuh las tertentu. Untuk memperoleh kekuatan hasil pengelasan yang dapat di jamin kualitasnya, pengelasan sebaiknya menggunakan bervariasi bentuk kampuh yang sudah dikembangkan dan telah distandarkan. Sambungan butt joint adalah jenis sambungan umum dalam aplikasinya jenis sambungan ini terdapat berbagai macam jenis kampuh atau groove diantaranya V groove (kampuh V), single bevel, J groove, U Groove, Square Groove untuk melihat macam macam kampuh las lebih detail lihat gambar berikut ini:

Gambar 1. Macam-macam kampuh butt joint

Untuk memastikan bahwa WPS yang telah distandarkan memiliki kekuatan sesuai dengan yang diringinkan, maka WPS harus diuji terlebih dahulu untuk memastikan kekuatan sambungan dengan yang telah di syaratkan dalam buku standar. Pengujian-pengujian ini dilakukan untuk memastikan bahwa standar dari parameter pengelasan telah benar dan menghasilkan hasil uji sesuai dengan yang telah distandarkan. Secara garis pendar metode pengujian las terbagi menjadi dua yaitu Destruktif Test (DT) dan Non Destruktif Test (NDT).

3. METODE PENELITIAN

1. Identifikasi Sambungan Las

Dalam hal ini, perlunya diperhatikan aspek-aspek standar pada pengelasan aluminium, di bawah ini merupakan aspek yang harus diperhatikan yang bersumber dari badan standarisasi yaitu ISO dan AWS:

a) WPS (Welder Procedure Specification)
 - Jenis Welding Process dan Thickness
 - Jenis Elektroda dan Filler/ Bahan Tambahan
 - Posisi Pengelasan
b) WPQR (Welder Procedure Qualification Record)

2. Identifikasi sambungan las pada Carbody

Identifikasi material, tipe welding dan letak material sambungan pada Carbody LRT PT. INKA berdasarkan standarisasi international welding untuk material aluminium Al 6061 T6 tipe plat dan tipe profil.

3. Penentuan parameter sambungan las carbody

Dalam sambungan las ada beberapa parameter diantaranya Thickness, Welding Process, Position dan Filler yang penting untuk diketahui dan harus sesuai dengan standar yang telah ditentukan, karena parameter ini merupakan petunjuk bagi welder dalam pelaksanaan pengelasan di workshop.

4. Proses Pengelasan Material Uji

Pada pengujian WPS ini pengelasan yang digunakan adalah las GTAW (Gas Tungsten Arc
Welding) atau Pengelasan TIG (Tungsten Inert Gas) dengan menggunakan Gas Argon 100% dan Filler Metal AWS ER 5356 (3 mm) serta posisi pengelasan Flat (IG) PA. Pengelasan TIG pada material aluminum ini didasarkan pada standar AWS D.1.2/D 1.2M : 2003 yakni bentuk sambungan V tunggal (single-V groove weld).

Gambar 2. Bentuk Sambungan Pengelasan

Keterangan:
- a) Bentuk Alur: Alur V Tunggal
- b) Panjang Spesimen: 200 mm
- c) Tebal Material: 3.58 mm
- d) Root Opening: 2 mm
- e) Size Of Weld: 3.58 mm
- f) Root Face: 1 mm
- g) Layer: 2 mm
- h) Groove Angle: 60°

Parameter Pengelasan :
- a) Tipe Arus : AC
- b) Arus : 125-135 (Filler) : AWS ER 5536
- c) Gas : Argon 100%
- d) Posisi Pengelasan : 1G (Flat up) dan 3G (Vertical up)
- e) Aliran : 10-15 L/min
- f) Dimensi ukuran spesimen

Gambar 3. Bentuk spesimen pengujian tarik (ASME)

Keterangan :
- Gage length (G) : 40-80 mm
- Width (W) : 10-12 mm
- Length of reduced section (A) : 57 mm
- Thickness (T) : 3.5, 8 mm
- Radius of filter (R) : 10-12
- Overall length : 200 mm

Gambar 4. Bentuk spesimen pengujian tekap (ASME)

Keterangan :
- Width (W) : 40-50 mm

Diagram Tegangan Rengangan

Gambar 5. Diagram Tegangan Rengangan

Variabel Pengujian

a) Pengujian Visual Examination

<table>
<thead>
<tr>
<th>Material</th>
<th>Posisi</th>
<th>Tebal</th>
<th>Uji Face</th>
<th>Uji Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>3 mm</td>
<td>P, Crk</td>
<td>IP, P, Crk</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>3 mm</td>
<td>P, Crk</td>
<td>IP, P, Crk</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>5 mm</td>
<td>P, Crk</td>
<td>IP, P, Crk</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>5 mm</td>
<td>P, Crk</td>
<td>IP, P, Crk</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>8 mm</td>
<td>P, Crk</td>
<td>IP, P, Crk</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>8 mm</td>
<td>P, Crk</td>
<td>IP, P, Crk</td>
</tr>
</tbody>
</table>

Ket: IP (Incomplete Fusion), P (Porosity), Crk (Crack)

b) Pengujian Radiography

<table>
<thead>
<tr>
<th>Material</th>
<th>Posisi Pengelasan</th>
<th>Tebal</th>
<th>Uji Las</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>3 mm</td>
<td>IP, P</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>3 mm</td>
<td>IP, P</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>5 mm</td>
<td>IP, P</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>5 mm</td>
<td>IP, P</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>8 mm</td>
<td>IP, P</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>8 mm</td>
<td>IP, P</td>
</tr>
</tbody>
</table>

Ket: IF (Incomplete Fusion), P (Porosity)

c) Pengujian Dye Penetrant Test

Tabel 3. Variabel Pengujian Dye Penetrant Test

<table>
<thead>
<tr>
<th>Material</th>
<th>Posisi Pengelasan</th>
<th>Tebal</th>
<th>Uji Face</th>
<th>Uji Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>3 mm</td>
<td>IP, P, Crk</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>3 mm</td>
<td>IP, P, Crk</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>5 mm</td>
<td>IP, P, Crk</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>5 mm</td>
<td>IP, P, Crk</td>
<td></td>
</tr>
</tbody>
</table>

Penerapan WPS... Ahmad Abi S.
d) Pengujian Tarik
Tabel 4. Variabel Pengujian Tarik

<table>
<thead>
<tr>
<th>Material</th>
<th>Posisi Pengelasan</th>
<th>Tebal</th>
<th>Uji Las</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>3 mm</td>
<td>Diterima</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>5 mm</td>
<td>Diterima</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>5 mm</td>
<td>Diterima</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>8 mm</td>
<td>Diterima</td>
</tr>
</tbody>
</table>

Ket: IF (Incomplete Fusion), IP (Incomplete Penetration), P (Porosity), Crk (Crack)

e) Pengujian Tekuk
Tabel 5. Variabel Pengujian Tekuk

<table>
<thead>
<tr>
<th>Material</th>
<th>Posisi Pengelasan</th>
<th>Tebal</th>
<th>Uji Face</th>
<th>Uji Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>3 mm</td>
<td>25°</td>
<td>Diterima</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>5 mm</td>
<td>10 mm</td>
<td>Diterima</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1G</td>
<td>5 mm</td>
<td>8 mm</td>
<td>Diterima</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3G</td>
<td>8 mm</td>
<td>8 mm</td>
<td>Diterima</td>
</tr>
</tbody>
</table>

Diterima

HASIL DAN PEMBAHASAN
Tabel 6. Pengujian visual

<table>
<thead>
<tr>
<th>Tebal</th>
<th>Posisi pengelasan</th>
<th>Cacat Las</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm</td>
<td>1G</td>
<td>Cacat las terjadi pada bagian kedua ujung lasan, dikarenakan ketidak sesuain panas yang terjadi. Bagian selain kedua ujung tidak terjadi cacat.</td>
<td>Diterima</td>
</tr>
<tr>
<td>5 mm</td>
<td>1G</td>
<td>Cacat las terjadi pada bagian kedua ujung lasan, dikarenakan ketidak sesuain panas yang terjadi. Bagian selain kedua ujung tidak terjadi cacat.</td>
<td>Diterima</td>
</tr>
</tbody>
</table>

Diterima

Dari keseluruhan pengujian visual menunjukkan bahwa cacat rata-rata terjadi pada awal dan akhir proses pengelasan. Cacat yang terjadi merupakan cacat corner melt dan juga end melt dengan intensitas yang sangat kecil yaitu kurang dari 0,6 mm. Di jelaskan dalam Welder Visual Inspection Handbook Tahun 2013 bahwa corner dan end melt terjadi karena ketidak sesuain panas yang terjadi pada material dan juga elektroda las, pada awal pengelasan keadaan material logam aluminium dalam keadaan dingin kemudian elektroda panas dari tungsten TIG diberikan untuk mencairkan logam pengisi, sedangkan pada akhir pengelasan keadaan material logam aluminium cukup panas sehingga ketika diberikan panas dari elektroda tungsten TIG mengakibatkan cacat terbentuk. Sesuai kode penerimaan pengujian visual EN ISO 6520-1 bahwa pada visual examination tidak terjadi Incomplete Penetration (IP) dan Incomplete Fusion (IF) maka material dinyatakan DITERIMA pada pengujian visual.

Tabel 7. Hasil Pengujian RT Butt Joint 5 mm 1G

<table>
<thead>
<tr>
<th>Part</th>
<th>Lokasi</th>
<th>Densitas</th>
<th>IF</th>
<th>IP</th>
<th>P</th>
<th>Inc</th>
<th>Crk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt</td>
<td>A-B</td>
<td>2.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Joint</td>
<td>3 mm</td>
<td>2.79</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Penerapan WPS.....Ahmad Abi S.
Tabel 8. Hasil Pengujian RT Butt Joint 3 mm 3G

<table>
<thead>
<tr>
<th>Part</th>
<th>Lokasi</th>
<th>Densitas</th>
<th>Cacat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt Joint 3 mm 3G</td>
<td>A-B</td>
<td>2.41 - 2.74</td>
<td>✓ - - -</td>
</tr>
</tbody>
</table>

Dibandingkan dengan material yang lain. Sedangkan densitas terbesar terjadi pada material 5 mm dengan posisi 1G yang menunjukkan angka densitas cahaya sebesar 2.86 yang menunjukkan bahwa kepadatan weld metal jauh lebih padat dibandingkan material lainnya.

Hasil pengujian Radiography menunjukkan perbedaan yang signifikan terhadap posisi pengelasan. Pada posisi pengelasan 1G (Flat) menunjukkan densitas minimal dan maksimal di atas persyaratan penerimaan radiography test yaitu densitas di antara 2.00 – 4.00 dan pada posisi 1G cacat weld metal area internal lasan sangat kecil dan masih memenuhi persyaratan penerimaan radiography test menurut EN ISO 6520-1.

Namun, cacat weld metal area internal lasan pada posisi 3G ini menunjukkan cacat yang cukup banyak meliputi Incomplete Fusion (IF) dan Porosity (P) yang dalam persyaratan penerimaan tidak diperkenankan untuk diterima karena cacat yang terjadi diatas ukuran dan jumlah syarat cacat yang telah ditentukan.

Tabel 9. Hasil Pengujian RT Butt Joint 5 mm 1G

<table>
<thead>
<tr>
<th>Part</th>
<th>Lokasi</th>
<th>Densitas</th>
<th>Cacat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt Joint 5 mm 1G</td>
<td>A-B</td>
<td>2.51 - 2.86</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

Tabel 10. Hasil Pengujian RT Butt Joint 5 mm 3G

<table>
<thead>
<tr>
<th>Part</th>
<th>Lokasi</th>
<th>Densitas</th>
<th>Cacat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt Joint 5 mm 3G</td>
<td>A-B</td>
<td>2.47 - 2.79</td>
<td>✓ ✓ - -</td>
</tr>
</tbody>
</table>

Tabel 11. Hasil Pengujian RT Butt Joint 8 mm 1G

<table>
<thead>
<tr>
<th>Part</th>
<th>Lokasi</th>
<th>Densitas</th>
<th>Cacat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt Joint 8 mm 1G</td>
<td>A-B</td>
<td>2.49 - 2.81</td>
<td>✓ - -</td>
</tr>
</tbody>
</table>

Tabel 12. Hasil Pengujian RT Butt Joint 8 mm 3G

<table>
<thead>
<tr>
<th>Part</th>
<th>Lokasi</th>
<th>Densitas</th>
<th>Cacat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt Joint 8 mm 3G</td>
<td>A-B</td>
<td>2.47 - 2.79</td>
<td>✓ - -</td>
</tr>
</tbody>
</table>

Dari tabel diatas menunjukkan densitas terkecil terjadi pada material 3 mm dengan posisi 3G dengan intensitas sinar yang di terima oleh film hanya 2,41 (satu huruf) hal ini menyatakan bahwa kepadatan weld metal pada material 3 mm tergolong rendah

Dari hasil pengujian cairan penetrant menunjukan rata-rata material mengalami cacat permukaan baik posisi pengelasan 1G maupun posisi pengelasan 3G, discontinuity atau cacat yang terjadi pada material berupa porositas pada wajah dan juga akar las dan juga incomplete fusion yang hanya terletak pada akar las. Porositas terbesar terjadi pada wajah las material 3 mm posisi pengelasan 1G dengan ukuran diameter porositas mencapai 1,3 mm sedangkan pada wajah las material lain terjadi porositas dengan ukuran diameter 1,2 mm bahkan pada material 5 mm posisi 3G dan juga material 8 mm dengan kedua posisi pengelasannya tidak terjadi...
porositas. *Incomplete Fusion* terjadi hanya pada akar lasan dan cenderung terjadi pada posisi pengelasan 3G dengan ukuran yang sangat kecil, caet *incomplete fusion* terjadi pada material 5 mm posisi 3G dan juga 8 mm posisi 3G. Standar penerimaan pengujuan caetan penetrasi yang tertera dalam buku ‘Guide to Weld Inspection for Strukural Steelwork’ karya The British Constructional Steelwork Association Limited ISBN 10: 1-85073-064-4 menunjukkan bahwa kapasitas porositas yang terjadi pada semua tipe sambungan akan diterima jika diameter tidak lebih dari 2 mm dengan jumlah kurang dari 5 lubang dari rentang panjang material 100 mm dengan arah *transversal* dan kurang dari 10 lubang untuk rentang panjang material 100 mm dengan arah *longitudinal*. Sedangkan *Incomplete Fusion* yang terjadi pada wajah lasan tidak ada toleransi penerimaan pada tipe sambungan apapun, sedangkan *Incomplete Fusion* yang terjadi pada akar lasan tipe sambungan *but joint* akan diterima ketika caetan yang terjadi kurang dari 3 mm dan ukuran caetan keseluruhan tidak lebih dari 1.5 *thickness* pada rentang jarak 100 mm untuk arah *transversal*, dan caetan kurang dari 3 mm dengan jumlah keseluruhan caetan tak lebih dari 3 *thickness* pada rentang jarak 100 mm.

1 2

3 4

5 6

Gambar 6 Kurva Uji Tarik
Tabel 14. Analisis data uji tarik

<table>
<thead>
<tr>
<th>No</th>
<th>Part</th>
<th>Posisi</th>
<th>Tegangan Maksimum</th>
<th>Rengangan Maksimum</th>
<th>Patah</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 mm</td>
<td>1G</td>
<td>14,100 kN</td>
<td>4.2 mm</td>
<td>Base</td>
</tr>
<tr>
<td>2</td>
<td>5 mm</td>
<td>1G</td>
<td>19,621 kN</td>
<td>10.45 mm</td>
<td>Base</td>
</tr>
<tr>
<td>3</td>
<td>8 mm</td>
<td>1G</td>
<td>28,714 kN</td>
<td>14.7 mm</td>
<td>Base</td>
</tr>
<tr>
<td>4</td>
<td>8 mm</td>
<td>1G</td>
<td>14,813 kN</td>
<td>4.86 mm</td>
<td>Base</td>
</tr>
<tr>
<td>5</td>
<td>5 mm</td>
<td>3G</td>
<td>17,547 kN</td>
<td>5.4 mm</td>
<td>Weld</td>
</tr>
<tr>
<td>6</td>
<td>8 mm</td>
<td>3G</td>
<td>16,615 kN</td>
<td>4.1 mm</td>
<td>Weld</td>
</tr>
</tbody>
</table>

Dari tabel diatas menunjukkan bahwa kekuatan tarik menunjukkan hasil yang baik pada material 8 mm posisi pengelasan 1G dengan tegangan maksimum berada pada angka 28.7 kN dan rengangan mencapai angka 14.7 mm serta material patah pada *base metal*. Sedangkan kekuatan tarik menunjukkan hasil yang buruk pada material 8 mm posisi pengelasan 3G dengan tegangan maksimum hanya mencapai angka 16.6 kN dan rengangan maksimum hanya menunjukkan angka 4.1 mm serta material patah pada bagian *weld metal*. Selain itu, pada material uji yang lain material uji dengan posisi pengelasan 1G rata-rata menunjukkan hasil yang baik dengan keadaan material patah pada bagian *base metal*. Sedangkan pada material posisi pengelasan 3G, dua di antara tiga material uji mengalami patah pada bagian *weld metal*.
PENUTUP
Kesimpulan

Setelah dilakukan uji pada aluminium 6061 hasil pengelasan MIG dengan menggunakan WPS (Welding Procedure Specification) Aluminium 6005 yang dilakukan di Laboratorium Teknik Mesin Universitas Muhammadiyah Malang dan PT. Bromo Steel Pasuruan, maka dapat ditarik beberapa kesimpulan sebagai berikut:

WPS (Welding Procedure Specification) Al 6005 standar ISO dapat digunakan untuk pengelasan material Al 6061 dengan menggunakan parameter yang sama dan juga menggunakan welder.

Hasil pengujian cacat dalam dengan menggunakan radiography test aluminium 6061 dengan variasi posisi pengelasan 1G (Flat) dan 3G (Vertikal) serta pada ketebalan 3 mm, 5 mm dan 8 mm menunjukkan hasil berbeda. Densitas tertinggi dihasilkan oleh pengelasan posisi 1G pada tebal material 5 mm dengan densitas cahaya mencapai 2,86. Sedangkan, Densitas terendah dimiliki oleh pengelasan posisi 3G pada material 3 mm dengan densitas cahaya 2,41. Cacat berupa porositas terjadi hampir pada semua material pengelasan baik posisi 1G maupun 3G namun cacat berupa Incomplete Fusion hanya terjadi pada semua pengelasan dengan posisi 3G. Sedangkan hasil pengujian cacat luar dengan menggunakan cairan penetrant menunjukkan porositas terjadi hampir pada semua posisi pengelasan namun cacat incomplete fusion terjadi hanya pada posisi pengelasan 3G dengan letak lokasi cacat berada pada bagian akar lasan.

Kekuatan material las dengan uji tarik dan teku menunjukan rata-rata kekuatan tertinggi berada pada posisi pengelasan 1G untuk semua ketebalan, dan kekuatan terendah terjadi pada material las dengan posisi 3G pada tebal 8 mm.

WPS Al 6005 yang diterapkan dalam pengelasan Al 6061 menunjuan hasil yang cukup baik dan pada standar penerimaan pengujian material menunjukkan 2gka diatas penerimaan untuk posisi pengelasan 1G.

Saran
Selanjutnya dari pembahasan penelitian ini, dapat dirangkum beberapa sarana yang berkaitan dengan penelitian ini adalah sebagai berikut:

Pada proses pengelasan material oleh welder harus diperhatikan terkait posisi pengelasan yang dimiliki oleh welder untuk hasil yang lebih baik.

Pada penelitian berikutnya diharapkan bisa membandingkan variasi arus pada material yang sama.
DAFTAR PUSTAKA

Hiyazi, Dr. Ala. Radiographic Testing, Introduction To Non-Destructive Testing Technique.

Tata Steel Handbook. Guide To Weld Inspection For Structural Steelwork. The British Conctructional
Originality Report

Similarity Index: 19%

Internet Sources: 18%

Publications: 3%

Student Papers: 12%

Primary Sources

<table>
<thead>
<tr>
<th>#</th>
<th>Source Description</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submitted to Universitas Jember</td>
<td>2%</td>
</tr>
<tr>
<td>2</td>
<td>ejournal3.undip.ac.id</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>www.mediaoposisi.com</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>www.ejournal-s1.undip.ac.id</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>id.scribd.com</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>www.pengelasan.net</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>pt.scribd.com</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>garuda.ristekdikti.go.id</td>
<td>1%</td>
</tr>
<tr>
<td>9</td>
<td>Submitted to Sriwijaya University</td>
<td>1%</td>
</tr>
<tr>
<td>Number</td>
<td>Source</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>10</td>
<td>manfaat.co.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>11</td>
<td>id.wikipedia.org</td>
<td>Internet Source</td>
</tr>
<tr>
<td>12</td>
<td>stta.name</td>
<td>Internet Source</td>
</tr>
<tr>
<td>13</td>
<td>eprints.umm.ac.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>14</td>
<td>uad.portalgaruda.org</td>
<td>Internet Source</td>
</tr>
<tr>
<td>15</td>
<td>repository.usu.ac.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>16</td>
<td>Submitted to University of Newcastle</td>
<td>Student Paper</td>
</tr>
<tr>
<td>17</td>
<td>cimpok.blogspot.com</td>
<td>Internet Source</td>
</tr>
<tr>
<td>18</td>
<td>Submitted to Cranfield University</td>
<td>Student Paper</td>
</tr>
<tr>
<td>19</td>
<td>www.scribd.com</td>
<td>Internet Source</td>
</tr>
<tr>
<td>20</td>
<td>dinamika.unram.ac.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>21</td>
<td>eprints.perbanas.ac.id</td>
<td>Internet Source</td>
</tr>
<tr>
<td>No.</td>
<td>Source Description</td>
<td>Percentage</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>22</td>
<td>Submitted to Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMMIMSA) Student Paper</td>
<td><1%</td>
</tr>
<tr>
<td>23</td>
<td>www.hotcoursesabroad.com Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>24</td>
<td>Submitted to Universitas Muria Kudus Student Paper</td>
<td><1%</td>
</tr>
<tr>
<td>25</td>
<td>www.sistel-networking.it Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>26</td>
<td>www.alate.se Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>27</td>
<td>awanl.blogspot.com Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>28</td>
<td>industry.airliquide.ca Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>29</td>
<td>Submitted to University of Witwatersrand Student Paper</td>
<td><1%</td>
</tr>
<tr>
<td>30</td>
<td>Submitted to Texas Woman's University Student Paper</td>
<td><1%</td>
</tr>
<tr>
<td>31</td>
<td>publikasiilmiah.ums.ac.id Internet Source</td>
<td><1%</td>
</tr>
<tr>
<td>32</td>
<td>Submitted to Universitas Diponegoro Student Paper</td>
<td><1%</td>
</tr>
<tr>
<td>Source URL</td>
<td>Internet Source</td>
<td>Percentage</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>digilib.unila.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>dimasjuliarso.blogspot.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>www.neliti.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>www.yumpu.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>jca.ele-math.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>journal.upgris.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>es.scribd.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>eprints.uny.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>ekonomi.metrotvnews.com</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>www.trijurnal.lemlit.trisakti.ac.id</td>
<td>Internet Source</td>
<td><1 %</td>
</tr>
<tr>
<td>Submitted to iGroup</td>
<td>Student Paper</td>
<td><1 %</td>
</tr>
</tbody>
</table>