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Abstract

The combustion process of Albizia falcataria (AF) sawdust with the addition of natural zeolite (NZ) was observed experi-
mentally using PT m() LINSEIS Simultaneous thermal analyzer (STA). The results showed that alkali metal and alkaline
metal earth in NZ play an essential role in the process of decomposing the Hemicellulose AF molecule. The results of
the molecular analysis show that the chemical balance of the mixture determines the combustion temperature. Excess NZ
becomes a thermal burden which slows down the combustion re§&Jon because heat does not sufficiently activate alkali metal
and alkaline metal earth in NZ. In a small amount, NZ is less involved in the AF decomposition process. It shows that a
mixture of AF and NZ can increase combustion kinetic in the right mix. Addition of 15-20% of NZ decreases the ignition
temperature within faster burning rate. Activated alkali metal and alkaline metal earth decompose hemicellulose faster so
that they burn completely in minimizing pollutant and maximizing LHV. Greater NZ completes the decomposition much
earlier so that at the resting time of the process NZ slightly absorbs heat sinking LHV. The drastic reduction of Ca due to

NZ make the fuel is suitable for boiler because Ca is responsible for agglomeration and corrosion.

Keywords Albizia falcataria - Ignition temperature - Combustion kinetic - Zeolite catalyst

Introduction

Albizia falcataria (AF) is one of the most widely planted
trees in Indonesia because it is quickly harvested at the age
of 5-7 years [1, 2]. AF is processed into semi-finished mate-
rial and then made into pallets, wooden crates. AF sawmills
produce large amounts of sawdust waste. The waste of wood
sawdust from AF processing in Indonesia will continue to
grow because of the short harvest age of the plant and thus
become an environmental problem. The research on applica-
tion of sawdust biomass fuel and the effort to improve boiler
efficiency have been done in the last decade [3-5]. The effect
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of the biomass fuel on the boiler corrosion has also been
studied [6]. To get better understanding on the combustion
characteristics of sawdust, this paper provides a scientific
discussion about the use NZ to improve sawdust as fuel.
Biomass com@Eliion reaction occurs in many steps [7],
namely: heating, pyrolysis (volatiles), pre-combustion reac-
tion, primary gas-phase combustion, secondary combustion,
effluent stack gas. Some previous researchers conducted
pyrolysis of biomass with additional zeolites capable of
producing more gas. The researcher [8] used H-ZSM-5 for
pyrolysis of pine and cypress whose results explained that
the function of catalyst acid was able to increase aromatic
concentration. Whereas [9, 10] made pyrolysis of the vari-
ous types of wood chips by adding ZSM35 discontinuously
and additional stainless steel ball bearings to make pyroly-
sis effective. Stainless steel ball bearings inhibit pyrolysis
vapor and expand the hot surface during thermal crack-
ing. The result shows that the percentage of H, CH,, C,H,,
C;H, gas increases with the addition of zeolite. The study
was conducted [11] on the pyrolysis ot’b@] wood (Fagus
svlvatica L.) with five types of zeolites (SN-27, MSN-15,
MSM-15, H-ZSM-5-28, and H-ZSM-5-80) to determine its
effect on lignocellulose. The results showed that zeolite acid
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malysl increases the amount of Fulfural and Levoglucosan.
H-ZSM-5 with lower alumina content is the most effective
in improving furfural because of better molecular diffusion
through pores. Overall, the above research shows that acid
catalyst can improve the final yield of lignocelluloses ther-
mal degradation in pyrolysis. This suggests that additional
zeolite must also improve reaction that makes combustion
characteristics better. Therefore, the present study aims to
uncover the role of natural zeolite (NZ) on combustion pro-
cess of AF.

Analysis of biomass combustion using thermogravim-
etry is important to know the thermochemical conversion
of combustible solid waste. The burning process of mixture
of pine sawdust and coal was analyzed using a thermogravi-
metric analyzer [12]. The result shows that pine sawdust is
decomposed at the beginning then followed by coal and pine
charcoal which are burned together at the same time. The
study [13] mixed cellulose, xylan and lignin with coal and
then analyzed its burning process using a thermogravimetric
analyzer. The result is that lignocellulose can increase the
rate of devolatization, reduce flame temperature, and accel-
erate charcoal combustion. The thermogravimetric analysis
of additional catalysts (KOH, NaOH, KCl, CuCl,/KClI, and
CaCl,/Ca0) in burning of Municipal Solid Waste found
the flame temperature reduced. At a temperature of 200 °C
Municipal Solid Waste with the addition of KOH catalyst,
CuCl,/KCl, and CaCl,/Ca0 have been degraded 5% while
others are still below it [14]. Research on thermogravimetric
analysis by burning rice and wheat straw with additional
catalysts (NiO, CuO, Ca0O, and Mg0O) was carried out [15].
The result is that the MgO catalyst at 200 °C has burned
more than 5% of rice straw while the others are lower. It
means that the catalyst can increase the rate of the volatility
of biomass. The same study was done by [16] investigating
using a thermogravimetric analyzer. In this study, combus-
tion of peanut shells, rice husks and wheat straw added with
organic calcium compounds were analyzed. The result shows
that the index of peanut skin and wheat straw burning perfor-
mance increase while the rice husk decreases. It is due to the
lowest C and H content of rice husks compared to the others
so the percentage of catalysts must be different.

Scientific data about the use of natural catalysts is very
limited, so more researches are needed. This study describes
the combustion of sawdust AF with the addition of Natu-
ral Zeon (NZ) using a thermogravimetric analyzer as a
reactor. A good understanding of the decomposition of bio-
mass during the thermochemical conversion process is very
important for the efficiency of the process and its technology
utilization [17].

Many NZ are available in Indonesia, making them easy
to obtain and cheap. NZ mines are found in the southern
part of Java, starting from Malang, Pacitan—East Java and
Cikembar, Cipatujah, Bayah—West Java. So far NZ has been
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applied only for dehydration of ethanol and transesterifi-
cation of crude palm oil [18, 19]. The study of improving
biomass combustion using NZ is rarely found. Therefore
this study provides a discussion of NZ applied to improve
biomass combustion characteristics. Since NZ contains a
lot of minerals which easily disintegrate and become active
when they get enough thermal energy, then the discussion
emphasizes the role of minerals in NZ for molecular decom-
position of hemicellulose.

ﬁaterials and Methods
2.1 Materials and properties analysis

The AF used in this study was taken from sawmills in
Lumajang, East Java, Indonesia. AF wagsthied in the sun
and crushed to a size of 100 mesh. The ultimate analysis
and proximate analysis were carried out using LECO CHN
-Z(XX)m] 5-632 equipment. The AF composition was ana-
lyzed to determine the percentage of cellulose, hemicellu-
lose, and lignin content as shown in Table la. Itis seen that
AF consists mostly of volatile matter but also contains very
little sulfur and nitrogen as well. Three main elements are
forming AF, detected carbon which is almost the same as
oxygen and hydrogen; there is a small part. The structure of

Table 1 a Characterization of Afbizia Falcataria. b. XRD analysis of
NZ

Ultimate analysis (dry basis, wt.%)

Carbon 45.53
Hydrogen 6.49
Nitrogen 0.31
Sulfur 0.1
Oxygen 46.13
Proxymate analysis (dry basis, wt%%)
Moisture 7.2
Volatile matter 749
Fixed Carbon 16.46
Ash 1.44
Gross Caloric Value (J/g) 18.229
Compotional analysis (%)
Cellulose 41.88
Hemicellulose 14.55
Lignin 24.78
(b)

Chemical formula Al g 16815754 O g7 50

r )
Na o0 Ca g Ky

Mg
Crystal system Monoclinic
Density (g/cm’) 2.17
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the composition of the AF-forming compound such as lig-
nocellulose generally consists of cellulose at most followed
by lignin and hemicellulose.

NZ was obtained from mining in Malang, East Java, Indo-
nesia, cleaned with distilled water and it was crushed into
the same size as AF sawdust. NZ is characterized using XRD
to determine the mineral content and crystal structure. The
XRD analysis results are listed in Table 1b. NZ chemical
formula is dominated by Oxygen and Si and Al which are
the main elements that form the tetrahedral structure. Also
detected are alkali metal and alkaline metal earth elements
as 10ns counterbalancing Al-O bonds to create a tetrahedral
structure.

Thermogravimetric analysis

Sawdust combustion from AF with a mixture of NZ was
analyzed using PT 1600 LINSEIS Simultaneous thermal
analyzer (STA) as a reactor shown [&2Fig. 1. This technique
was also applied in [20, 21]. The sample is placed in the
sample pan while the reference pan is usually empty, tested
at three different initial weight AF; AF1=10 mg,
AF2 =15 mg and AF3=20 mg. The addition of NZ to the
test sample are 15% and 25% of the initial weight AF,
namely, AF1 + NZ (15% xAF]) s0 on. Samples at three
different weights were burned from room temperature to
900 °C with a heating rate of 80 °C/min and air flow of 5 Ls/
min [22], then held for 10 min at 900 °C for a complete
combustion. Heating using a heating element (heater) was
controlled by the CPU. Airflow is generated using a

G

Compressor

(:ompresmlhal 1s regulated using valves and flow indicator
meters. Temperature is measured using a thermocouple
attached to the sample pan and reference. Weight changes
are weighed by the scale connected with the sample pan and
reference. These weight changes are lh'ecorded as rela-
tive weight loss (TG) ::T:(%)’ where m is instantaneous
mass of the sample and my; is initial mass of the sample. The
rate of relative weight loss was estimate from time derivative
of TG as = 409,
dt

2.3 Catalytic Combustion Analysis

The use of NZ catalysts on combustion sawdust AF can
reduce the ignition temperature so that it can achieve lower
activation energy. The formula of the Conversion Degree
of Combustible (CDC) is used to calculate the tempera-
ture around wood powder [23, 24] based on data from TG
defined as in Eq. 1.

CDC m, —im

m m
=—2  orCDC=——— x100(|%]|,
or 1001

100 —m m, —
’h oo a

where m,, is the final mass of the sample obtained from STA.
Besides the temperature around sawdust AF powder, CDC
1s also used to estimate the effect of NZ on combustion of
AF. There are two parameters used to estimate the effect of
on AF. One is the temperature when CDC of the sample
reaches 5% and the other one is the CDC when temperature
reaches 900 °C [14].

Eo
QO

Fig.1 Schematic principle of STA
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Chemical analysis of ash

The ash from AF combustion was analyzed using SEM (FEI
INSPECT tipe S50). This instrument was also equipped with
EDAX which is useful to analyze the content of the ash surface
structure. The content of the ash is presented in Table 2.

Result and discussion
TG and DTG analysis

Biomass combustion occurs in two main stages: de-volatil-
ization stage and oxidation stage [21]. Likewise, burning a
mixture of AF and NZ also can be divided into two phases.
The first 1s volatile combustion, and the second is fixed char
combustion.

Data obtained from the reactor are time, temperature, rela-
tive weight loss (m/mo) and derivatives of relative weight
loss. In burning AF, the catalyst works more effectively in
combustion when lowering the flame temperature. The effect
of adding catalysts at combustion AF is high when a sudden
increase in CDC occurs at a lower ignition temperature. In this
paper, the impact of adding NZ percentages and initial weight
differences are discussed.

Figure 2 describes TG (Relative weight loss, right side)
and DTG (Derivative weight loss, left side) at combustion AF,
AF+15% NZ, and AF+ 25% NZ at various AF weights. The
lignocellulose content in AF in Table larefers to [25] accord-
ing to the general biomass content. Solid line represents TG
and dashed line represents DTG.

Figure 2a explains about TG-DTG at the initial weight
of 10 mg. Combustion AF1 without NZ have faster weight
degradation. It is because NZ is a thermal burden as the heat
from combustion 1s small so it cannot activate minerals in NZ.
Consequently, ash containing 510, and Al,O, is burned so that
there is still residue in the pan [26]. Adding NZ to AF causes
the percentage of ash to increase because Si and Al elements
arrange the compounds. At the end of the process, the percent-
age of TG of combustion ash AF2 with the addition of NZ is
higher than that without additives.

In Fig. 2b for sample weight of 15 mg, the rate of weight
reduction in combustion AF2+15% NZ is slower than
AF2+25% NZ. That is because hemicellulose, cellulose,
and lignin decompose together due to the NZ catalysis effect.
It is seen that the blue line (TG) 1s steeper than the red line
(TG), but when the temperature approaches 600 °C, the blue

line (DTG) rises almost to zero indicating that hemicellulose,
cellulose, and lignin burnout. At the end of the combustion,
only NZ is left so that the ash percentage is 25% more at
AF2+25%NZ; the blue line (TG) is more than the red line
(TG). The residue of using NZ is almost half of that at 10 mg
sample (Fig. 2a) indicating that NZ work better.

In Fig. 2c NZ has started working and controlling combus-
tion. At 20 mg AF combustion, NZ has enough heat to be
active even though AF+25% NZ has not been burned better
than AF + 15% NZ. It can be seen that in burning lignin (fixed
carbon) at temperatures above 600 °C, the DTG blue line is
close to zero followed by red and black lines. It means that at
the fix carbon combustion stage, NZ could break down lignin
faster than without NZ. The percentage of ash which is around
20% equals to the percentage of NZ in the AF. This shows that
the AF burned completely indicating that the burning of AF
with NZ is almost free of pollutant emission. This result is sup-
ported by Table 2 which presents that the ash mainly contains
St and O and then Al, these are the main elements in NZ while
C was completely disappear.

Influence of NZ on catalytic combustion

Figure 3 shows the CDC which explains the influence of NZ
on combustion AF., CDch compares the character of
combustion by measuring temperature when the weight loss
rea{m 5% [14]. The higher the CDC temperature means
the effect of the catalyst does not affect the combustion of
AF. Whereas on the contrary, it is true that the catalyst has a
significant effect on combustion AF. For an initial weight of
10 mg (Fig. 3) the addition of NZ does not increase the rate of
weight degradation. AF without NZ is at a lower ignition tem-
perature, followed by additions of 15% and 25% NZ at higher
temperatures. CDC AF temperature occurs at a temperature of
253 °C, while an additional 15% NZ makes the CDC AF occur
at a temperature of 275 °C.

Furthermore, the addition of NZ to 25% makes CDC AF
occur at 309 °C. That happened because the weight of AF
burned too little and the heat produced by combustion was
absorbed by NZ so that it was not enough to make minerals
in NZ become active to help combustion in other words NZ
only became a thermal burden. As a result, AF+NZ requires
higher amount of heat to burn.

In Fig. 4 with the addition of NZ to the initial weight of
15 mg in combustion, AF shows the difference in tempera-
ture of the CDC. The addition of 15% of NZ causes CDC AF

Table2 Chemical analysis

results of ash Element C o
AF 105 352
AF+15%NZ 165  39.3
AF+23%NZ - 452

2.8 2.0 18 14.5 1.3 0.3 29 24.5 38
0.4 0.2 4.3 29.4 - - 39 4.6 1.0
L5 0.8 7.2 37.0 - - 43 1.8 [ ]
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at the lowest temperature (251, 256, and 259 °C). The same
thing happens at the initial weight of 20 mg, which is shown in
Fig. 5. Addition of 15% of NZ gives the lowest CDC tempera-
ture. It shows that the amount of heat is only enough to activate
NZto 15%. Above that percentage, NZ became a thermal load.

AF+ NZ sawdust combustion with an initial weight
of 20 mg has the lowest CDC temperature (234, 239, and
248 °C) (Fig. 5). That is, the heat from the fuel has been able
to activate NZ to 25% even though in this amount NZ is not
as active as 15%.

In Figs. 4 and 5 there is a red line which is AF+15%
NZ increasing precedently at 214 °C and 208 °C. It 1s due
to the composition of the right mixture in AF4 NZ so that
NZ can break AF bonds thoroughly. AF sawdust 14.55%
of its content is hemicellulose which will be decomposed

10 4
—a— AF3
*— AF3+15%NZ
s J a— AF3+25%NZ |
e 6 4
< S A /S
o
4
3 o
D T T T L]
150 200 250 300
Temperature (°C)

Fig.5 CDC AF 20 mg vs. Temperature

Fig.6 The proposed mechanism
for catalytic combustion of AF
(Hemicellulose) and NZ blends

W Mg
@ «
Q c
@c
@ o
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by heat energy together with the change in NZ structure.
Hemicellulose consists of several polymers, e.g., xylan. The
Explanation of polymer breakdown in this discussion use
xylan for the main polymer that forms hemicellulose [27,
28]. Hemicellulose consists of branched polymers which are
more easily broken down than cellulose. One of the essential
branches is xylan, so if there is an initial decomposition of
combustion, it can be predicted that it is xylan [29, 30]. Data
obtained after processing proves that the addition of NZ can
reduce the decomposition temperature of lignocellulose AF
as the results of research conducted by [31].

During the combustion process, some heat energy makes
NZ release Nat, Mg2+, K™, and Ca’t (Alkali metal and
Alkaline metal earth) as counterbalancing ions (Fig. 6).
Alkali metal and alkaline metals earth are more energetic
atoms in tearing the connecting oxygen between the mono-
mers of hemicellulose in AF so that the hemicellulose will
be broken into shorter bonds (Fig. 7).

It can be seen in the NZ structure in Fig. 6 that alkali
metal and alkaline metal earth in NZ, namely Na, Mg, K,
and Ca act as counterbalancing of Al-O and Si-O to form
tetrahedral structures in NZ. When NZ is heated the struc-
ture changes to Bronsted acid by releasing Na *, Mg**, K¥,
and Ca>*. These ions will make the partial negative oxygen
connecting the hemicellulose polymer bonds experience a
continuous attracting force which eventually dislodges. As
aresult, the polymer will turn into a monomer (Fig. 6). It
results in 15 mg of AF burning faster at lower temperatures
because of shorter bonds which are more flammable. The
results of this study are in accordance with the study in [32,
33] which explained that alkali metal and alkaline metal
earth are useful catalysts for pyrolysis, combustion, and
gasification.

Larger alkali metal and alkaline metal earth molecules

disrupt oxygen which binds polymer carbon so that the
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Fig.7 Termination of polymer
bonds by Nat, a L-Arabinose. b
Waleric acid, ¢ Levulinic acid. d
Ethylene glycol

Air + Heat

polymeric bonds will be broken. For small initial fuel mass
(10 mg), the addition of NZ causes AF to burn more slowly
at higher temperatures because the heat energy from com-
bustion of AF is not enough to activate zeolite to release
alkali metal and alkaline metal earth ions so that it only
functions as a thermal load. It is different for the initial
weight of 15 and 20 mg, especially in 15% NZ which can
break the hemicellulose chain faster. This mechanism is
caused by the volatility of AF before it burns. At the same
time, alkali metal and alkaline metal earth in NZ have got
enough heat energy to be activated and released so that they
attract oxygen polymer chains (red lines in Figs. 4 and 5).
For the addition of 25% NZ there is a slowdown in flame
temperature because heat is absorbed more by NZ than AF
so that the process of AF volatility it is slower (blue lines
in Figs. 4 and 5).

Figure 7 illustrates that air flow and heat make alkali
metal and alkaline metal earth, e.g., black Na which is
released from the NZ. Na attracts red oxygen from the poly-
mer bonds so that the broken bonds are shorter a and b.
Na—O bonds is temporary, making Na (or other balanc-
ing ions) separated into free atoms to break other bonds (a)

and (b) with the same mechanism so that they become short
chain bonds that are more flammable.

Na electron in the outer shell induces O electrons because
the C—O-C bond i1s weakened due to heat. As a result, the
C—0O-C bond is broken so that the polymer turns into a mon-
omer. The electron of Na (or another balancing ion) induces
and attracts O atoms that weaken O-C bond due to increased
heat, accelerating the process of decomposition of Lignocel-
lulose. Finally the combustion temperature decreases.

Influence of NZ on LHV

Table 3 shows the heat released (LHV) by the burning of
AF at various NZ. The change of mean heat released caused
addition of NZ is presented in Fig. 8. It can be seen that at
small sample (10 mg) the addition of NZ increases LHV
since the decomposition rate takes place along the process
as shown in Fig. 2a. However at larger samples (15 mg and
20 mg) increasing NZ reduces slightly LHV. This is due to
the fact that decomposition of AF is completed much earlier
at lower temperature (see Fig. 2b and 2¢) so that as the time
proceeds the NZ does not work to decompose cellulose but

Table 3 Heat released by AF at

N No AF1=10 mg AF2=15mg AF3=20mg
various NZ

1 2 3 4 5 6 7 8 9

0% I5%NZ 25%NZ 0% 15%NZ 25%NZ 0% 15%NZ  25%NZ
Preheat (I/g) 56.13 21.14 33.75 T2.85 51.72 69.3 54.52 57.51 34.84
MainHeat (J/g) 6365.16 6873.44 7T690.46 6820.55 68452 5855.69 3593045 54542 5376.67
Onset point °C 240 4 2443 249.6 2064 212.6 235.1 190.1 203.7 205.9
Offset point 'C 560.3 5997 611.5 7955 T44 642.3 83444 T62.6 7329
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9000 and corrosion decreases to a minimum number due to NZ.
8000 This makes the AF added with NZ catalyst become suitable

5 7000 - for boiler.
= 6000
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Fig.8 The change of mean heat released by combustion of AF at var-
lous NZ

absorbs heat of combustion slightly. Consequently the LHV
decreases slightly.

3.4 Influence of NZ on ash chemical composition

As presented in Table 2 the chemical compositions in ash
(Wt%) of AF change over addition of NZ. All minerals
which are not component of NZ reduce. The Ca, which is
responsible for agglomeration and corrosion [6] reduces
drastically. The Si which is increased largely together with
O due to the NZ addition which 1s composed mainly by
silica and alumina. This result suggests that addition of NZ
makes AF suitable for boiler fuel.

Conclusions

The study of AF combustion with the addition of NZ has
been shown to reduce flame temperature. Proper addition of
NZ can accelerate the devolatization of AF which eventually
speeds up the combustion process. The role of alkali metal
and alkaline metal earth in NZ can break the lignocellulose
polymer chain so that it decomposes quickly into a mono-
mer. The monomer then decomposes into several flammable
gases. However, the ratio of AF and NZ affects the combus-
tion process. The addition of NZ to the small number of
AF burning makes NZ to become a thermal load. When the
weight of AF is high, the addition of the right percentage
of AF accelerates the process of breaking C—-O-C bonds.
Addition of 15-20% of NZ decreases the ignition tempera-
ture within faster burning rate. Activated alkali metal and
alkaline metal earth decompose hemicellulose faster so that
they burn completely in minimizing pollutant and maximiz-
ing LHV. At greater number of NZ, the decomposition is
completed much earlier so that as the time proceeds NZ does
not work to decompose cellulose but slightly absorbs heat
sinking LHV. The Ca that is responsible for agglomeration
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