PERBANDINGAN METODE DOUBLE EXPONENTIAL SMOOTHING DAN LEAST SQUARE UNTUK SISTEM PREDIKSI HASIL PRODUKSI TEH

(Studi Kasus: PTPN XII Persero Kebun Bantaran Kabupaten Blitar)

¹Muhammad Bagus Nurkahfi (1310651163)

²Bakhtiyar Hadi Prakoso, S.T, M.Kom

³Victor Wahanggara, S.T, M.Kom

Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember

Email: nurkahfi.bagus@gmail.com

ABSTRAK

Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya perbedaan kesenjangan waktu (timelag) antara kesadaran akan dibutuhkannya suatu kebijakan baru dengan waktu pelaksanaan kebijakan tersebut. Peramalan sering kali dimanfaatkan dalam dunia pekerjaan, salah satunya meramalkan hasil produksi teh, sehingga perusahaan dapat mengetahui hasil produksi teh pada masa mendatang. Dengan membandingkan data hasil produksi menggunakan metode Least Square dan Double Exponential Smoothing dengan presentase kesalahan terkecil. Pada penelitian yang saya lakukan dengan membandingkan kedua metode antara Double Exponential Smoothing dan Least Square menggunakan 60 data trining menunjukkan hasil tingkat akurasi dari metode Least Square lebih unggul dibandingkan metode Double Exponental Smoothing dengan nilai MAPE Last square = 17,008% sedangkan pada metode Double Exponential Smoothing nilai MAPE terkecil terdapat pada alfa 0,1 = 18,084%.

Kata kunci: Least Square, Double Exponential Smoothing, MAPE (Mean Absolute Precentage Error), forecasting, timelag.

BAB I PENDAHULUAN

1.1 Latar Belakang

Hampir semua perusahaan yang bergerak di bidang industri saat ini menghadapi tingkat persaingan yang semakin ketat. Hal tersebut mengharuskan perusahaan untuk dapat merencanakan kegiatan produksi dengan baik, sehingga diharapkan keuntungan perusahaan akan meningkat. Untuk itu dibutuhkan suatu sistem yang dapat membantu mengatasi masalah produksi yang ada pada setiap perusahaan.

PTP Nusantara XII Kebun Bantaran adalah badan usaha milik negara yang bergerak di bidang perkebunan. Yang menjadi komoditi paling utama di PTPN XII Kebun Bantaran adalah teh karena kemampuan produksinya yang relatif lebih cepat dibandingkan tanaman lain, hal ini menjadikan penulis ingin meneliti produksi teh yang ada di PTPN XII Kebun Bantaran. Dalam kasus ini data yang diolah terdapat pengaruh trend atau data yang tidak stasioner maka dibutuhkan suatu metode peramalan yang cocok untuk menganalisa data tersebut yaitu metode *Least Square* dan *Double Exponential Smoothing*.

Berdasarkan beberapa penelitian terdahulu, metode *Double Exponential Smoothing* dan *Least Square* dengan data pendapatan retribusi kendaraan bermotor, memiliki tingkat akurasi yang sangat baik yakni nilai *Mean Absolute Precentage Error* berada di bawah 10%. Oleh karena itu penulis mencoba melakukan penelitian untuk menganalisa

data hasil produksi teh dengan kedua metode tersebut dan membandingkan akurasi untuk menentukan mana yang terbaik untuk memprediksikan hasil produksi teh di PTPN XII Persero Kebun Bantaran. Atas dasar inilah, penulis mengambil judul tugas akhir "PERBANDINGAN METODE DOUBLE EXPONENTIAL SMOOTHING DAN LEAST SQUARE UNTUK SISTEM PREDIKSI HASIL PRODUKSI TEH (Studi Kasus : PTPN XII PERSERO Kebun Bantaran KAB.Blitar)".

BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Sebelum melakukan penelitian penulis terlebih dahulu melakukan tinjauan pustaka dari penelitian lain yang berkaitan dengan prediksi, penelitian ini bukanlah penelitian yang pertama kalinya. Sebelumnya sudah ada penelitian yang membahas mengenai metode *Least Square* dan *Double Exponential Smoothing* yang berhubungan dengan produksi. Berikut adalah beberapa penelitian yang terkait dengan masalah tersebut.

Penelitian yang dilakukan oleh (Danar Putra Pamungkas) 2016

Penelitian yang dilakukan oleh Danar Putra Pamungkas berjudul "Implementasi metode *Least Square* untuk prediksi penjualan tahu pong". Data yang digunakan untuk penelitian ini merupakan data penjualan atau jumlah kemasan tahu pong (bungkus) yang terjual pada periode 1

April 2016 sampai 31 Mei 2016 diambil dari tiga tempat penjualan yaitu toko Pusaat Oleh-oleh Jombang, toko Jogoroto dan toko yang ada di pasar Jombang. Penelitian ini menghasilkan bahwa metode *Least Square* dapat digunakan untuk memprediksi penjualan tahu pong dengan nilai korelasi 0,88.

Penelitian yang dilakukan oleh (Fajar Riska Perdana) 2016

Penelitian yang dilakukan oleh Fajar Riska Perdana berjudul " Perbandingan metode *Doouble Exponential Smoothing* dengan *Triple Exponential Smoothing* pada peramalan penjualan rokok (studi kasus toko utama lumajang)". Data yang digunakan adalah data penjualan perbulan di Toko Utama. *Software* yang digunakan adalah *Visual Basic.Net* yaitu sebuah alat untuk mengembangkan dan membangun aplikasi yang bergerak diatas sistem .*NET Framework*, dengan menggunakan bahasa BASIC. Penelitian ini menghasilkan bahwa metode *Double Exponential Smoothing* lebih akurat dibandingkan *Triple Exponential Smoothing* Nilai a terkecil yang mendekati nol didapat dari perhitungan peramalan *Double Exponential Smoothing a*=0.5 dengan nilai prosentase MAPE = 15,262 %.

Penelitian yang dilakukan oleh (Yanuar Adi Kurniawan dan Bowo Nurhadiyono) 2016

Penelitian yang dilakukan oleh Yanuar Adi Kurniawan dan Bowo Nurhadiyono berjudul "Komparasi Metode Least Square dan Double Exponential Smoothing Untuk Menganalisa Pendapatan Retribusi Uji Kendaraan Bermotor". Data yang digunaka adalah data retribusi Uji kendaraan bermotor pada tahun 2014-2015. Penelitian ini menghasilkan bahwa pengukuran nilai MAPE pada metode Least quare terkecil 8,744% dan terbesar 17,903%. Sedangkan metode Double Exponential Smoothing terkecil 9,723% dan terbesar 20,03%. Hampir semua nilai error pada metode Least Square lebih kecil dibandingkan dengan metode Double Exponential Smoothing sehingga dalam kasus ini metode Least Square lebih akurat.

2.2 Produksi

Produksi merupakan suatu kegiatan yang dikerjakan untuk menambah nilai guna suatu banda atau menciptakan benda baru sehingga lebih bermanfaat dalam memenuhi kebutuhan. Kegiatan menambah daya guna suatu

benda tanpa mengubah bentuknya dinamakan produksi jasa. Sedangkan kegiatan menambah daya guna suatu benda dengan mengubah sifat dan bentuknya dinamakan produksi barang. Produksi bertujuan untuk memenuhi kebutuhan manusia untuk mencapai kemakmuran. Kemakmuran dapat tercapai jika ketersediaan barang dan jasa dalam jumlah yang mencukupi (ethis, 2007).

Produksi adalah suatu kegiatan untuk menciptakan atau menambah nilai guna suatu barang yang ditujukan untuk orang lain melalui pertukaran (ethis, 2007).

2.3 Teh

Tanaman teh merupakan tanaman perkebunan yang mempunyai kemampuan produksi relatif lebih cepat dibandingkan tanaman perkebunan lainnya. Kelebihan lainnya yaitu dapat berfungsi hidrologis dan dengan pengaturan rotasi petik, tanaman teh dapat dipanen menurut petak pemetikan sehingga hasil tanaman teh tersedia setiap hari. Umur ekonomisnya dapat mencapai 70 tahun, sehingga akan dapat memberi peluang bisnis yang cukup handal pada kondisi pasar yang cenderung naik turun (Anonim, 1992).

Tanaman teh berasal dari daerah subtropis, oleh karena itu di Indonesiateh lebih cocok ditanam di daerah dataran tinggi. Lingkungan fisik yang paling berpengaruh terhadap pertumbuhan teh ialah iklim dan tanah. Faktor iklim yang berpengaruh terhadap pertumbuhan tanaman teh adalah curah hujan, suhuudara, tinggi tempat, sinar matahari, dan angin. Di Indonesia tanaman teh hanyaditanam di dataran tinggi. Ada kaitan erat antara tinggi tempat (elevasi) dengan suhu, yaitu semakin rendah elevasi suhu udara akan semakin tinggi. Perbedaan ketinggian tempat menyebabkan perbedaan suhu dan mempengaruhi pertumbuhan perdu teh (Setyamidjaja, 2000).

2.4 Peramalan

Peramalan adalah proses perkiraan (pengukuran) besar atau jumlah sesuatu pada waktu yang akan datang berdasarkan data pada masa lampau yang dianalisis secara ilmiah khususnya menggunakan metode statistika (Sudjana,1989:254), peramalan adalah dasar dari segala jenis perencanaan dimana hal ini sangat diperlukan untuk lingkungan (Makridakis, 1993:24).

Sedangkan model regresi mengasumsikan bahwa faktor yang diramalkan menunjukkan suatu hubungan sebab akibat dengan satu atau lebih variabel bebas. Peramalan digunakan untuk mengetahui kapan suatu peristiwa akan

terjadi atau timbul, sehingga tindakan yang tepat dapat dilakukan. Hal ini berlaku jika waktu tenggang merupakan alasan utama bagi perencanaan dan peramalan. Peramalan merupakan alat bantu yang penting dalam perencanaan yang efektif dan efisien (Makridakis dkk, 1993:3).

Ukuran ini tidak memudahkan perbandingan antar deret berkala yang berbeda dan untuk selang waktu yang berlainan, karena MSE merupakan ukuran absolut. Dengan keterbatasan MSE sebagai suatu ukuran ketepatan peramalan, maka diusulkan ukuran – ukuran alternatif, yang diantaranya menyangkut galat presentase (Makridakis, 1999). Tiga ukuran tersebut adalah *Precentage Error* (PE), *Mean Precentage Error* (MPE) *dan Mean Absolut Precentage Error* (MAPE).

2.5 Metode Double Exponential Smoothing

Smoothing adalah mengambil rata – rata dari nilai pada beberapa periode untuk menaksir nilai pada suatu periode, Exponential Smoothing adalah suatu peramalan rata – rata bergerak yang melakukan pembobotan menurun secara exponential terhadap nilai – nilai observasi yang lebih tua (Makridakis, 1993:79). Metode Exponential Smoothing merupakan pengembangan dari metode Moving Average. Dalam metode ini peramalan dilakukan dengan mengulang perhitungan secara terus menerus dengan menggunakan data baru.

Peramalan Expinential Smoothing merupakan salah satu kategori metode time series yang menggunakan pembobotan data masa lalu secara eksponensial. Dalam kategori ini terdapat beberapa metode yang umum dipakai, antara lain metode Single Exponential Smoothing, Double Exponential Smoothing, dan Triple Exponential Smooting (Makridarkis, 1989).

Meurut Assauri (1948), dasar pemikiran dari metode *Exponential* adalah bahwa nilai pemulusan akan terdapat pada waktu sebelum data sebenarnya apabila pada data tersebut terdapat komponen trend. Oleh karena itu untuk nilai - nilai pemulusan tunggal perlu ditambahkan nilai pemulusan ganda guna menyesuaikan trend. Metode yang sedemikian itu dikenal dengan nama metode Brown.

Metode *Double Exponential Smoothing* digunakan ketika data menunjukkan adanya trend. *Exponential smoothing* dengan adanya trend seperti pemulusan sederhana kecuali bahwa dua komponen harus diperbarui setiap periode – level dan trendnya. Level adalah estimasi yang

dimuluskan dari nilai data pada akhir masing — masing periode. Trend adalah estimasi yang dihaluskan dari pertumbuhan rata — rata pada akhir masing — masing periode. (Makridakis, 1999). Rumus untuk *Double Exponential Smoothing* adalah:

$$S'_{t} = \alpha X_{t} + (1 - \alpha) S'_{t-1}$$

$$S''_{t} = \alpha S'_{t} + (1 - \alpha) S''_{t-1}$$

$$\alpha_t = S'_t + (S't - S''t) = 2S'_t - S''_{t-1}$$

$$b_t = \frac{\alpha}{1-\alpha} (S'_t - S''_t)$$

$$F_{t+m} = \alpha_t + b_t$$
, dimana $m = 1$

Dimana:

 X_t = Data pada periode t

S'_t = Nilai pemulusan 1 periode t

S"_t = Nilai pemulusan 2 periode t

S'_{t-1}= Nilai pemulusan pertama sebelumnya (t-1)

S"_{t-1}= Nilai pemulusan kedua sebelumnya (t-2)

A = Konstanta pemulusan

 α_t = Intersepsi pada periode t

b_t = Nilai trend pada periode t

 F_{t+m} = Hasil peramalan untuk periode t+1

m = Jumlah periode waktu kedepan

Agar dapat menggunakan persamaan diatas, nilai S'_{t-1} dan S''_{t-1} harus tersedia. Tetapi pada saat T=1, nilai tersebut tidak tersedia, jadi nilai – nilai ini harus tersedia di awal.

Disini metode pemulusan eksponensial tunggal tidak cukup baik diterapkan jika datanya bersifat tidak stasioner atau memiliki trend, oleh karena itu penulis menggunakan metode *double exponential smoothing* karena data yang di teliti memiliki trend yang ditandai dengan adanya kecenderungan arah data bergerak naik dan turun pada jangka panjang.

2.6 Metode Kuadrat Terkecil (*Least quare*)

Metode *Least Square* adalah metode peramalan yang digunakan untuk melihat trend dari data deret waktu (Sofyan Assauri, 1991). Metode *Least Square* adalah salah satu metode pendekatan yang digunakan untuk regresi ataupun pembentukan persamaan dari titik — titik data diskretnya (dalam permodelan), dan analisis sesatan pengukuran (dalam validasi model). Dengan rumus sebagai berikut:

$$Y = a + bx$$

Keterangan:

Y : Jumlah penjualan

a & b : Koefisien

x / t : Waktu tertentu dalam bentuk kode

Dalam menentukan nilai x / t seringkali digunakan teknik alternatif dengan memberikan skor atau kode. Dalam hal ini dilakukan pembagian data menjadi dua kelompok, yaitu :

- Data genap, maka skor nilai t nya : ..., -5, -3, -1, 1, 3,
 ...
- 2. Data ganjil, maka skor nilai t nya : ..., -3, -2, -1, 0, 1, 2, 3, ...

Selanjutnya, untuk mengetahui koefisien a dan b di cari dengan menggunakan rumus :

$$A = \frac{\Sigma Y}{n} \qquad B = \frac{\Sigma XY}{X'}$$

2.7 MAPE (Mean Absolute Precentage Error)

MAPE merupakan perhitungan perbedaan antara data asli dan data hasil peramalan. Perbedaan dari perhitungan tersebut diabsolutkan sehingga bernilai positif, dan kemudian dihitung ke dalam bentuk presentase terhadap data asli. Hasil presentase tersebut kemudian didapatkan nilai *mean*nya. Suatu model mempunyai kinerja yang sangat bagus jika nilai MAPE berada di bawah 10%, dan mempunyai kinerja bagus jika nilai MAPE berada di antara 10% dan 20 %(Zainul dan Majid, 2003). MAPE lebih banyak digunakan untuk mengukur akurasi *time series*, khususnya untuk mengukur trend. Rumus MAPE adalah sebagai berikut:

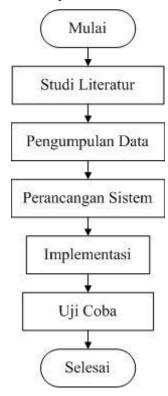
$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{|Xt - Ft|}{Xt} 100$$

Keterangan:

 X_t = Data aktual pada periode ke t

 F_t = Nilai ramalan pada periode ke t

n = Banyaknya periode waktu


2.8 PTPN XII Kebun Bantaran

Kebun Bantaran dibuka tahun 1945 oleh perusahaan perkebunan N.V. COY AND COSTER dengan Tanaman Kina mulai tahun 1957 – 1994 menjadi Perusahaan PPN, PNP, PTP XXIII, pada tahun 1996 sampai dengan sekarang berdasarkan peraturan pemerintah No.17, tanggal 28 Februari 1996 dengan akte notaris Harun Kamil, SH. Nomor 45 tanggal 11 Maret 1996, menjadi PT Perkebunan Nusantara XII (Persero).

Kebun Bantaran dibagi menjadi tiga afdeling, yaitu Afdeling bantaran, Afdeling Sirah Kencong, dan Afdeling Penataran.

BAB III METODOLOGI PENELITIAN

Untuk penyusunan Tugas Akhir ini peneliti membutuhkan beberapa tahapan untuk mengolah data agar mendapatkan hasil yang maksimal. Oleh karena itu peneliti menyusun langkah — langkah untuk memaksimalkan penyusunan Tugas Akhir ini. Berikut langkah — langkah dari metode yang digunakan oleh peneliti :

Gambar 3.1 Metode Penelitian Peramalan

Produksi Teh

3.1 Studi Literatur

Pada tahap ini peneliti mempelajari data dan informasi yang berkaitan dengan produksi serta metode *Least Square* dan *Double Exponential Smoothing* untuk meramalkan data produksi dan menghitung tingkat eror terkecil serta membandingkan antara kedua metode tersebut mana yang lebih optimal untuk studi kasus ini. Dalam penelitian ini refrensi diambil dari berbagai sumber, seperti buku, jurnal, *e-book*, serta sumber-sumber lain yang dapat memberi tambahan wawasan untuk penelitian ini.

3.2 Pengumpulan Data

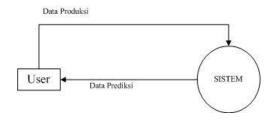
Proses pengumpulan data merupakan proses awal untuk melakukan penelitian yang akan dilakukan. Pada tahapan ini peneliti melakukan kunjungan ke PTPN XII Kebun Bantaran Blitar untuk mengumpulkan data produksi Teh dari bulan januari hingga desember 2016. Berikut adalah tabel data produksi teh yang di peroleh dari PTPN XII Kebun Bantaran Blitar.

Tabel 3.1 Data Produksi Teh 2012 – 2016

		
Tahun	Bulan	Produksi
2012	Januari	41,391 Ton
2012	Februari	33,712 Ton
2012	Maret	45,506 Ton
2012	April	30,945 Ton
2012	Mei	49,481 Ton
2012	Juni	35,681 Ton
2012	Juli	31,201 Ton
2012	Agustus	24,260 Ton
2012	September	34,689 Ton
2012	Oktober	36,619 Ton
2012	November	43,720 Ton
2012	Desember	29,005 Ton
2013	Januari	55,351 Ton
2013	Februari	32,784 Ton
2013	Maret	41,229 Ton
2013	April	41,393 Ton
2013	Mei	35,400 Ton
2013	Juni	27,293 Ton
2013	Juli	27,555 Ton
2013	Agustus	25,641 Ton
2013	September	28,739 Ton
2013	Oktober	31,414 Ton
2013	November	45,492 Ton
2013	Desember	47,171 Ton
2014	Januari	19,376 Ton
2014	Februari	34,782 Ton
2014	Maret	39,863 Ton
2014	April	49,502 Ton
2014	Mei	40,108 Ton
2014	Juni	37,822 Ton
2014	Juli	25,984 Ton
2014	Agustus	33,629 Ton
2014	September	35,196 Ton
2014	Oktober	33,622 Ton
2014	November	43,882 Ton
2014	Desember	46,249 Ton
2015	Januari	38,086 Ton
2015	Februari	31,334 Ton
2015	Maret	48,080 Ton
2015	April	39,419 Ton
2015	Mei	45,311 Ton
2015	Juni	36,843 Ton
2015	Juli	29,438 Ton
2015	Agustus	32,652 Ton
2015	September	29,309 Ton

Tahun	Bulan	Produksi
2015	Oktober	34,567 Ton
2015	November	33,672 Ton
2015	Desember	58,633 Ton
2016	Januari	42,485 Ton
2016	Februari	37,522 Ton
2016	Maret	36,059 Ton
2016	April	40,758 Ton
2016	Mei	35,262 Ton
2016	Juni	33,151 Ton
2016	Juli	24,613 Ton
2016	Agustus	30,961 Ton
2016	September	35,549 Ton
2016	Oktober	35,527 Ton
2016	Nopember	33,105 Ton
2016	Desember	36,699 Ton

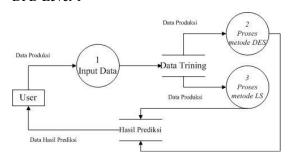
Berdasarkan data pada tabel 3.1 diketahui bahwa data hasil produksi teh di PTPN XII Kebun Bantaran memiliki trend karena terdapat kenaikan dan penurunan pada data, seperti ditunjukkan pada grafik berikut :


Gambar 3.2 Grafik hasil produksi teh tahun 2012 –

2016

3.3 Perancangan Sistem

Merupakan tahap pembuatan design sistem yang akan di buat pada sistem prediksi hasil produksi teh di Kebun Bantaran Kabupaten Blitar. Sebuah sistem dapat di bangun oleh lebih dari satu proses. Dengan demikian diperlukan perancangan proses yang akan memberikan gambaran umum mengenai sistem yang akan dibangun. Rancangan proses sistem prediksi hasil produksi teh ini digambarkan menggunakan diagram arus data (DFD) berikut.


1. Diagram Konteks

Gambar 3.3 Diagram Konteks

Pada diagram konteks ini, data produksi yang diinputkan oleh user akan diproses pada sistem. Kemudian dari sistem akan menghasilkan hasil prediksi yang akan dilaporkan kepada user.

2. DFD Level 1

Gambar 3.4 DFD Level 1

Pada level ini sistem dipecah menjadi 3 proses yaitu proses Input Data, Perhitungan metode *Double Eponential Smoothing*, Perhitungan metode *Least Square*. Dari seluruh proses pada DFD Level 1 ini akan dihasilkan hasil akhir nilai prediksi dari kedua metode.

3.4 Implementasi

Pada tahapan ini akan dilakukan evaluasi melalui suatu tahap implementasi percobaan dimana akan dibuktikan secara teoritis dan praktikal terhadap perangkat dan metode baru yang telah diusulkan. Hasil dari evaluasi ini nantinya akan menjadi bahan analisa dan kesimpulan penelitian ini.

3.5 Uji Coba

Dalam tahapan ini akan dilakukan ujicoba melalui tahapan implementasi percobaan yang akan dibuktikan secara teoritis.

3.6 Analisis Data

Setelah memperoleh data, penulis melakukan peritungan dari data tersebut menggunakan metode *Least Square* dan *Double Exponential Smoothing*, kemudian menghitung nilai eror terkecil dan membandingkan kedua metode tersebut mana yang lebih optimal untuk meramalkan hasil produksi teh di PTPN XII Persero Kebun Bantaran Blitar.

3.6.1 Contoh Perhitungan Metode Least Square

Pada perhitungan metode *Least Square* ini kita terlebih dahulu menentukan nilai X berdasarkan data yang akan kita olah, kemudian menghitung nilai XY dan X^2 untuk

menghitung nilai a dan b yang akan digunakan untuk meramalkan data hasil produksi.

1. Menentukan Nilai X

Karena jenis data yang akan diolah merupakan data genap, maka nilai Xnya adalah ...-5,-3,-1,1,3,5 dan seterusnya.

2. Menghitung Nilai XY bulan Januari

XY Januari 2012 : 41391 * (-6) = -248346

3. Menghitung Nilai X bulan Januari

X' Januari 2012 : $-6^2 = 36$

4. Menghitung Niali A

A:
$$\frac{\Sigma y}{n} = \frac{436210}{12} = 36350,833$$

5. Menghitung Nilai B

B:
$$\frac{\Sigma xy}{\Sigma x'} = \frac{-103514}{182} = -568,758$$

6. Menghitung Ramalan untuk bulan januari

$$Y' = a + bx$$

Y' januari
$$2012 = 36350,833 + (-568,758 * -6) = 39763,383$$

Tabel 3.2 Tabel Contoh Perhitungan Least Square

Tahun	Bulan	Produksi	X	XY	X2	Prediksi
2012	Jan	41391	-6	-248346	36	39763,383
2012	Feb	33712	-5	-168560	25	39194,625
2012	Mar	45506	-4	-182024	16	38625,866
2012	Apr	30945	-3	-92835	9	38057,108
2012	Mei	49481	-2	-98962	4	37488,350
2012	Jun	35681	-1	-35681	1	36919,592
2012	Jul	31201	1	31201	1	35782,075
2012	Agt	24260	2	48520	4	35213,317
2012	Spt	34689	3	104067	9	34644,559
2012	Okt	36619	4	146476	16	34075,800
2012	Nov	43720	5	218600	25	33507,042
2012	Des	29005	6	174030	36	32938,284

Tabel 3.2 merupakan tahap – tahap proses perhitungan dengan menggunakan metode *Least Square*. Diketahui nilai A=36350,833, nilai B=-568,758 dan nilai X pada bulan januari 2013=7, maka prediksi untuk bulan Januari 2013 adalah :

3.6.2 Contoh Perhitungan Metode *Double Exponential*Smoothing

Pada perhitungan metode *Double Exponential Smoothing* akan dihitung peramalan dengan $\alpha = 0,1$ sampai $\alpha = 0,9$ dimana nilai parameter α besarnya antar $0 < \alpha < 1$ dengan

trial dan eror (sesuai dengan langkah yang ditempuh dalam pemecahan metode linear satu parameter dari brown).

Perhitungan peramalan dengan Double Exponential Smoothing linear satu parameter dari brown dengan parameter $\alpha=0.1$

Bulan ke -2 (Februari 2012) $X_t = 33712$

1. Perhitungan Expoential Tunggal:

$$S_t = \alpha X_t + (1 - \alpha) S_{t-1}$$

$$S_t = 0.1(33712) + (1 - 0.1) 41391$$

$$= 3371.2 + 37251.9$$

$$= 40623.1$$

2. Perhitungan Exponential Ganda:

$$S'_{t} = \alpha S'_{t} + (1 - \alpha) S''_{t-1}$$

$$S'_{t} = 0,1(40623,1) + (1 - 0,1) 41391$$

$$= 4062,31 + 37251,9$$

$$= 41314,21$$

3. Perhitungan Nilai α_t

$$\alpha_t$$
 = $S_t + (St - S't) = 2S_t - S'_t$
= $2(40623,1) - 41314,21$
= $39931,99$

4. Perhitungan Nilai b_t

$$b_{t} = \frac{\alpha}{1-\alpha} (S_{t} - S'_{t})$$

$$= \frac{0.1}{1-0.1} (40623.1 - 41314.2)$$

$$= -76.79$$

5. Peramalan untuk Bulan Ke – 2 (Februari 2015) m= 1

$$F_{t+m} = \alpha_t + b_t m$$
, dimana $m = 1$
= 41391 + 0*1
= 41391 Kg

Tabel 3.3 Tabel Perhitungan *Double Exponential* Smoothing

Tahun	Bulan	Produksi	St	S't	at	bt	Prediksi
2012	Jan	41391	41391	41391	41391	0,000	0,000
2012	Feb	33712	40623,100	41314,210	39931,990	-76,790	41391,000
2012	Mar	45506	41111,390	41293,928	40928,852	-20,282	39855,200
2012	Apr	30945	40094,751	41174,010	39015,492	-119,918	40908,570
2012	Mei	49481	41033,376	41159,947	40906,805	-14,063	38895,574
2012	Jun	35681	40498,138	41093,766	39902,511	-66,181	40892,742
2012	Jul	31201	39568,424	40941,232	38195,617	-152,534	39836,330
2012	Agt	24260	38037,582	40650,867	35424,297	-290,365	38043,083
2012	Spt	34689	37702,724	40356,053	35049,395	-294,814	35133,932
2012	Okt	36619	37594,351	40079,882	35108,820	-276,170	34754,581
2012	Nov	43720	38206,916	39892,586	36521,247	-187,297	34832,650
2012	Des	29005	37286,725	39632,000	34941,450	-260,586	36333,950

Tabel 3.3 merupakan tahap – tahap proses perhitungan dengan menggunakan metode *Double Exponential Smoothing* dengan $\alpha = 0,1$ diketahui nilai at dan bt pada bulan desember 2012 = 34941,450 dan -260,586 maka hasil prediksi untuk bulan Januari 2013 adalah

$$\begin{aligned} F_{t+m} &= \alpha_t + b_t m \text{ , dimana } m = 1 \\ &= 34941,\!450 + (-260,\!586 *1) \\ &= 34680,\!864 \text{ Kg} \end{aligned}$$

Pada perhitungan dengan menggunakan metode *Double Exponential Smoothing* harus menghitung satu – persatu nilai prediksi dari α 0,1 – 0,9 dan menentukan nilai MAPE terkecil, dan α yang memiliki nilai MAPE terkecil akan dijadikan sebagai data prediksi.

3.6.3 Perhitungan Mean Absolute Precentage Error (MAPE)

Dari data – data peramalan pada tabel 3.2 dan 3.3, kita akan menghitung presentase *error* dari kedua metode tersebut, untuk membandingkan metode mana yang lebih cocok untuk meramalkan data hasil produksi di PTPN XII Kebun Bantaran Blitar.

1. Perhitungan MAPE Least Square

Untuk menghitung MAPE dari hasil perhitungan metode *Least Square*, langsung dihitung dari hasil peramalan yang ada pada tabel 3.2 dengan mencari selisih dari data aktual dan data ramal, mengabsolutkan nilai selisih untuk menghilangkan nilai negatif, kemudian mulai menghitung MAPE.

Tabel 3.4 Tabel Perhitungan MAPE Least Square

Tahun	Bulan	Xt	Ft	Xt-Ft	Xt-Ft	Xt-Ft /Xt
2012	Jan	41391	39763,383	-1627,617	1627,617	0,039
2012	Feb	33712	39194,625	5482,625	5482,625	0,163
2012	Mar	45506	38625,866	-6880,134	6880,134	0,151
2012	Apr	30945	38057,108	7112,108	7112,108	0,230
2012	Mei	49481	37488,350	- 11992,650	11992,650	0,242
2012	Jun	35681	36919,592	1238,592	1238,592	0,035
2012	Jul	31201	35782,075	4581,075	4581,075	0,147
2012	Agt	24260	35213,317	10953,317	10953,317	0,451
2012	Spt	34689	34644,559	-44,441	44,441	0,001
2012	Okt	36619	34075,800	-2543,200	2543,200	0,069
2012	Nov	43720	33507,042	10212,958	10212,958	0,234
2012	Des	29005	32938,284	3933,284	3933,284	0,136
			•		$\sum_{t=1}^{n} \frac{ \mathit{Xt-Ft} }{\mathit{Xt}}$	1,898

Berdasarkan data pada tabel 3.4 diketahui jumlah selisih data aktual dan data ramal yang telah diabsolutkan dibagikan dengan data aktual ($\sum_{t=1}^n \frac{|Xt-Ft|}{Xt}$) sebesar 10,205. Maka nilai MAPE nya adalah sebagai berikut:

MAPE
$$= \frac{1}{n} \sum_{t=1}^{n} \frac{|Xt - Ft|}{Xt} 100$$
$$= \frac{1}{12} * 1,898 * 100$$
$$= 15,819 %$$

2. Perhitungan MAPE Double Exponential Smoothing

Pada metode *Double Exponential Smoothing* harus dihitung satu – persatu nilai MAPE mulai dari $\alpha=0.1$ sampai dengan $\alpha=0.9$ kemudian dipilih nilai MAPE yang terkecil. Berikut perhitungan MAPE dengan $\alpha=0.5$.

Tabel 3.5 Tabel Perhitungan MAPE *Double Exponential Smoothing*

Tahun	Bulan	Xt	Ft	Xt-Ft	Xt-Ft	Xt- Ft /Xt
2012	Jan	41391	0,000	0,000	0,000	0,000
2012	Feb	33712	41391,000	-7679,000	7679,000	0,228
2012	Mar	45506	39855,200	5650,800	5650,800	0,124
2012	Apr	30945	40908,570	-9963,570	9963,570	0,322
2012	Mei	49481	38895,574	10585,426	10585,426	0,214
2012	Jun	35681	40892,742	-5211,742	5211,742	0,146
2012	Jul	31201	39836,330	-8635,330	8635,330	0,277
2012	Agt	24260	38043,083	13783,083	13783,083	0,568
2012	Spt	34689	35133,932	-444,932	444,932	0,013
2012	Okt	36619	34754,581	1864,419	1864,419	0,051
2012	Nov	43720	34832,650	8887,350	8887,350	0,203
2012	Des	29005	36333,950	-7328,950	7328,950	0,253
					$\sum_{t=1}^{n} \frac{ Xt-Ft }{Xt}$	2,399

Berdasarkan data pada tabel 3.5 diketahui nilai $\sum_{t=1}^n \frac{|Xt-Ft|}{Xt}$ sebesar 2,399. Maka nilai MAPE nya adalah sebagai berikut:

MAPE =
$$\frac{1}{n} \sum_{t=1}^{n} \frac{|Xt - Ft|}{Xt} 100$$

= $\frac{1}{12} * 2,399 * 100$
= 19.988 %

3.7 Pengujian

Berdasarkan data produksi yang dihitung secara manual diperoleh bahwa metode *Double Exponential Smoothing* lebih akurat, selanjutnya akan dilakukan pengujian kecepatan memprediksi antara kedua metode tersebut di aplikasi dengan menginputkan semua data dan melakukan perhitungan peramalan penjualan menggunakan metode DES dan LS, yang nantinya akan di ketahui mana metode

yang tercepat dan akurat untuk memprediksikan hasil produksi teh pada bulan berikutnya.

BAB IV HASIL DAN PEMBAHASAN

4.1 Ruang Lingkup Sistem

Spesifikasi perangkat keras dan perangkat lunak yang digunakan dalam uji coba aplikasi ini adalah :

a. Perangkat Keras :1. Intel^R AtomTM

2. RAM 2GB

3. Mouse dan Keyboard

b. Perangkat Lunak: 1. Netbeans IDE 8.2

2. Database MySQL

4.2 Implementasi Sistem

Implementasi sistem ini menjelaskan proses perbandingan prediksi hasil produksi teh periode bulan selanjutnya dengan metode *Double Exponential Smoothing* dan *Least Square*. Untuk menghitung nilai kesalahan peramalannya, peneliti menggunakan *Mean Absolute Precentage Error* (MAPE). Langkah – langkah dari proses implementasi ini adalah urutan dari kegiatan awal sampai akhir yang harus diselesaikan dalam sistem. Implementasi sistem ini bertujuan untuk memastikan bahwa sistem yang di bangun bekerja dengan baik dan sesuai dengan harapan.

4.3 Perhitungan Secara Manual

Berikut adalah perhitungan yang dilakukan secara manual dari 60 data training yang telah diperoleh menggunakan metode *Least Square* dan *Double Exponential Smoothing* serta perhitungan tingkat *error* dari kedua metode tersebut.

4.3.1 Perhitungan dengan Metode Least Square

Pada perhitungan metode *Least Square* ini kita terlebih dahulu menentukan nilai X berdasarkan data yang akan kita olah, kemudian menghitung nilai XY dan X^2 untuk menghitung nilai A dan B yang akan digunakan untuk meramalkan data hasil produksi.

1. Menentukan Nilai X

Karena jenis data yang akan diolah merupakan data genap, maka nilai Xnya adalah ...-5,-3,-1,1,3,5 dan seterusnya.

Menghitung Nilai XY bulan Januari

XY Januari 2012 : 41391 * (-59) = -2442069

3. Menghitung Nilai X bulan Januari

X' Januari 2012 : $-59^2 = 3481$

4. Menghitung Niali A

A:
$$\frac{\Sigma y}{n} = \frac{2194722}{60} = 36578,700$$

5. Menghitung Nilai B

B:
$$\frac{\Sigma xy}{\Sigma x'} = \frac{-441210}{71980} = -6,130$$

6. Menghitung Ramalan untuk bulan januari

$$Y' = a + bx$$

Y' januari 2015 = 36578,700 + (-6,130 * -59) = 36940,348

Tabel 4.1 Tabel Perhitungan Least Square

				intungun		•
Tahun	Bulan	Produksi	X	XY	X'	Prediksi
2012	Jan	41391	-59	-2442069	3481	36940,348
2012	Feb	33712	-57	-1921584	3249	36928,088
2012	Mar	45506	-55	-2502830	3025	36915,829
2012	Apr	30945	-53	-1640085	2809	36903,570
2012	Mei	49481	-51	-2523531	2601	36891,311
2012	Jun	35681	-49	-1748369	2401	36879,051
2012	Jul	31201	-47	-1466447	2209	36866,792
2012	Agt	24260	-45	-1091700	2025	36854,533
2012	Spt	34689	-43	-1491627	1849	36842,274
2012	Okt	36619	-41	-1501379	1681	36830,014
2012	Nov	43720	-39	-1705080	1521	36817,755
2012	Des	29005	-37	-1073185	1369	36805,496
2013	Jan	55351	-35	-1937285	1225	36793,237
2013	Feb	32784	-33	-1081872	1089	36780,977
2013	Mar	41229	-31	-1278099	961	36768,718
2013	Apr	41393	-29	-1200397	841	36756,459
2013	Mei	35400	-27	-955800	729	36744,200
2013	Jun	27293	-25	-682325	625	36731,940
2013	Jul	27555	-23	-633765	529	36719,681
2013	Agt	25641	-21	-538461	441	36707,422
2013	Spt	28739	-19	-546041	361	36695,163
2013	Okt	31414	-17	-534038	289	36682,904
2013	Nov	45492	-15	-682380	225	36670,644
2013	Des	47171	-13	-613223	169	36658,385
2014	Jan	19376	-11	-213136	121	36646,126
2014	Feb	34782	-9	-313038	81	36633,867
2014	Mar	39863	-7	-279041	49	36621,607
2014	Apr	49502	-5	-247510	25	36609,348
2014	Mei	40108	-3	-120324	9	36597,089
2014	Jun	37822	-1	-37822	1	36584,830
2014	Jul	25984	1	25984	1	36572,570
2014	Agt	33629	3	100887	9	36560,311
2014	Spt	35196	5	175980	25	36548,052
2014	Okt	33622	7	235354	49	36535,793
2014	Nov	43882	9	394938	81	36523,533
2014	Des	46249	11	508739	121	36511,274

		•	,		,	
Tahun	Bulan	Produksi	X	XY	X'	Prediksi
2015	Jan	38086	13	495118	169	36499,015
2015	Feb	31334	15	470010	225	36486,756
2015	Mar	48080	17	817360	289	36474,496
2015	Apr	39419	19	748961	361	36462,237
2015	Mei	45311	21	951531	441	36449,978
2015	Jun	36843	23	847389	529	36437,719
2015	Jul	29438	25	735950	625	36425,460
2015	Agt	32652	27	881604	729	36413,200
2015	Spt	29309	29	849961	841	36400,941
2015	Okt	34567	31	1071577	961	36388,682
2015	Nov	33672	33	1111176	1089	36376,423
2015	Des	58633	35	2052155	1225	36364,163
2016	Jan	42485	37	1571945	1369	36351,904
2016	Feb	37522	39	1463358	1521	36339,645
2016	Mar	36059	41	1478419	1681	36327,386
2016	Apr	40758	43	1752594	1849	36315,126
2016	Mei	35262	45	1586790	2025	36302,867
2016	Jun	33151	47	1558097	2209	36290,608
2016	Jul	24613	49	1206037	2401	36278,349
2016	Agt	30961	51	1579011	2601	36266,089
2016	Spt	35549	53	1884097	2809	36253,830
2016	Okt	35527	55	1953985	3025	36241,571
2016	Nov	33105	57	1886985	3249	36229,312
2016	Des	36699	59	2165241	3481	36217,052
				L		

Tabel 4.1 merupakan tahap – tahap proses perhitungan dengan menggunakan metode *Least Square*. Diketahui nilai A=36578,700, nilai B=-6,130 dan nilai X pada bulan januari 2017=61, maka prediksi untuk bulan Januari 2017 adalah:

$$Y = a + bx$$

$$= 36578,700 + (6,130 * 61)$$

$$= 36204,7932 \text{ Kg}$$

4.3.2 Perhitungan Metode Double Exponential Smoothing

Pada perhitungan metode *Double Exponential Smoothing* akan dihitung peramalan dengan $\alpha=0,1$ sampai $\alpha=0,9$ dimana nilai parameter α besarnya antar $0<\alpha<1$ dengan trial dan eror (sesuai dengan langkah yang ditempuh dalam pemecahan metode linear satu parameter dari brown).

Perhitungan peramalan dengan Double Exponential $Smoothing \quad linear \quad satu \quad parameter \quad dari \quad brown \quad dengan$ parameter $\alpha=0,1$

Bulan ke – 2 (Februari 2012)
$$X_t = 33712$$

6. Perhitungan Expoential Tunggal:

$$\begin{split} S_t &= \alpha X_t + (1-\alpha) \ S_{t-1} \\ S_t &= 0.1(33712) + (1-0.1) \ 41391 \\ &= 3371.2 + 37251.9 \\ &= 40623.1 \end{split}$$

7. Perhitungan Exponential Ganda:

$$S'_{t} = \alpha S'_{t} + (1 - \alpha) S''_{t-1}$$

$$S'_{t} = 0.1(40623.1) + (1 - 0.1) 41391$$

$$= 4062.31 + 37251.9$$

$$= 41314.21$$

8. Perhitungan Nilai α_t

$$\alpha_t$$
 = $S_t + (St - S't) = 2S_t - S'_t$
= $2(40623,1) - 41314,21$
= $39931,99$

9. Perhitungan Nilai b_t

$$b_{t} = \frac{\alpha}{1-\alpha} (S_{t} - S'_{t})$$

$$= \frac{0.1}{1-0.1} (40623, 1 - 41314, 2)$$

$$= -76.79$$

10. Peramalan untuk BulanKe-2(Februari 2015) m = 1

$$F_{t+m} = \alpha_t + b_t m \text{ , dimana } m = 1$$

$$= 41391 + 0*1$$

$$= 41391 \text{ Kg}$$

Tabel 4.2 Tabel Perhitungan *Double* Exponential Smoothing

Tahun	Bulan	Produksi	St	S't	at	bt	Prediksi
2012	Jan	41391	41391	41391	41391	0,000	0,000
2012	Feb	33712	40623,100	41314,210	39931,990	-76,790	41391,000
2012	Mar	45506	41111,390	41293,928	40928,852	-20,282	39855,200
2012	Apr	30945	40094,751	41174,010	39015,492	-119,918	40908,570
2012	Mei	49481	41033,376	41159,947	40906,805	-14,063	38895,574
2012	Jun	35681	40498,138	41093,766	39902,511	-66,181	40892,742
2012	Jul	31201	39568,424	40941,232	38195,617	-152,534	39836,330
2012	Agt	24260	38037,582	40650,867	35424,297	-290,365	38043,083
2012	Spt	34689	37702,724	40356,053	35049,395	-294,814	35133,932
2012	Okt	36619	37594,351	40079,882	35108,820	-276,170	34754,581
2012	Nov	43720	38206,916	39892,586	36521,247	-187,297	34832,650
2012	Des	29005	37286,725	39632,000	34941,450	-260,586	36333,950
2013	Jan	55351	39093,152	39578,115	38608,189	-53,885	34680,864
2013	Feb	32784	38462,237	39466,527	37457,947	-111,588	38554,305
2013	Mar	41229	38738,913	39393,766	38084,061	-72,761	37346,359
2013	Apr	41393	39004,322	39354,821	38653,823	-38,944	38011,299
2013	Mei	35400	38643,890	39283,728	38004,051	-71,093	38614,878
2013	Jun	27293	37508,801	39106,235	35911,366	-177,493	37932,958
2013	Jul	27555	36513,421	38846,954	34179,887	-259,281	35733,873
2013	Agt	25641	35426,179	38504,876	32347,481	-342,078	33920,606
2013	Spt	28739	34757,461	38130,135	31384,787	-374,742	32005,403

Produksi

Prediksi

Tabel 4.2 merupakan tahap – tahap proses perhitungan dengan menggunakan metode *Double Exponential Smoothing* dengan $\alpha=0,1$ diketahui nilai at dan bt pada bulan desember 2017 = 34492,456 dan -128,163 maka hasil prediksi untuk bulan Januari 2017 adalah

$$\begin{aligned} F_{t+m} & = \alpha_t + b_t m \text{ , dimana } m = 1 \\ & = 34492,\!456 \ + (-128,\!163 \ ^*1) \end{aligned}$$

= 34364,293 Kg

Pada perhitungan dengan menggunakan metode *Double Exponential Smoothing* harus menghitung satu – persatu nilai prediksi dari α 0,1 – 0,9 dan menentukan nilai MAPE terkecil, dan α yang memiliki nilai MAPE terkecil akan dijadikan sebagai data prediksi.

4.3.3 Perhitungan Mean Absolute Precentage Error (MAPE)

Dari data – data peramalan pada tabel 4.1 dan 4.2, kita akan menghitung presentase *error* dari kedua metode tersebut, untuk membandingkan metode mana yang lebih cocok untuk meramalkan data hasil produksi di PTPN XII Kebun Bantaran Blitar.

3. Perhitungan MAPE Least Square

Untuk menghitung MAPE dari hasil perhitungan metode *Least Square*, langsung dihitung dari hasil peramalan yang ada pada tabel 4.2 dengan mencari selisih dari data aktual dan data ramal, mengabsolutkan nilai selisih untuk menghilangkan nilai negatif, kemudian mulai menghitung MAPE.

Tabel 4.3 Tabel Perhitungan MAPE Least Square

Tahun	Bulan	Xt	Ft	Xt-Ft	Xt-Ft	Xt-Ft /Xt
2012	Jan	41391	36940,348	-4450,652	4450,652	0,108
2012	Feb	33712	36928,088	3216,088	3216,088	0,095
2012	Mar	45506	36915,829	-8590,171	8590,171	0,189
2012	Apr	30945	36903,570	5958,570	5958,570	0,193
2012	Mei	49481	36891,311	12589,689	12589,689	0,254
2012	Jun	35681	36879,051	1198,051	1198,051	0,034
2012	Jul	31201	36866,792	5665,792	5665,792	0,182
2012	Agt	24260	36854,533	12594,533	12594,533	0,519
2012	Spt	34689	36842,274	2153,274	2153,274	0,062
2012	Okt	36619	36830,014	211,014	211,014	0,006
2012	Nov	43720	36817,755	-6902,245	6902,245	0,158
2012	Des	29005	36805,496	7800,496	7800,496	0,269
2013	Jan	55351	36793,237	- 18557,763	18557,763	0,335
2013	Feb	32784	36780,977	3996,977	3996,977	0,122
2013	Mar	41229	36768,718	-4460,282	4460,282	0,108
2013	Apr	41393	36756,459	-4636,541	4636,541	0,112
2013	Mei	35400	36744,200	1344,200	1344,200	0,038
2013	Jun	27293	36731,940	9438,940	9438,940	0,346
2013	Jul	27555	36719,681	9164,681	9164,681	0,333
2013	Agt	25641	36707,422	11066,422	11066,422	0,432
2013	Spt	28739	36695,163	7956,163	7956,163	0,277
2013	Okt	31414	36682,904	5268,904	5268,904	0,168

Tahun	Bulan	Xt	Ft	Xt-Ft	Xt-Ft	Xt-Ft /Xt
2013	Nov	45492	36670,644	-8821,356	8821,356	0,194
2013	Des	47171	36658,385	-	10512,615	0,223
2013	Jan	19376	36646,126	10512,615 17270,126	17270,126	0,891
2014	Feb	34782	36633,867	1851,867	1851,867	0,053
2014	Mar	39863	36621,607			0,033
				-3241,393	3241,393	
2014	Apr	49502	36609,348	12892,652	12892,652	0,260
2014	Mei	40108	36597,089	-3510,911	3510,911	0,088
2014	Jun	37822	36584,830	-1237,170	1237,170	0,033
2014	Jul	25984	36572,570	10588,570	10588,570	0,408
2014	Agt	33629	36560,311	2931,311	2931,311	0,087
2014	Spt	35196	36548,052	1352,052	1352,052	0,038
2014	Okt	33622	36535,793	2913,793	2913,793	0,087
2014	Nov	43882	36523,533	-7358,467	7358,467	0,168
2014	Des	46249	36511,274	-9737,726	9737,726	0,211
2015	Jan	38086	36499,015	-1586,985	1586,985	0,042
2015	Feb	31334	36486,756	5152,756	5152,756	0,164
2015	Mar	48080	36474,496	11605,504	11605,504	0,241
2015	Apr	39419	36462,237	-2956,763	2956,763	0,075
2015	Mei	45311	36449,978	-8861,022	8861,022	0,196
2015	Jun	36843	36437,719	-405,281	405,281	0,011
2015	Jul	29438	36425,460	6987,460	6987,460	0,237
2015	Agt	32652	36413,200	3761,200	3761,200	0,115
2015	Spt	29309	36400,941	7091,941	7091,941	0,242
2015	Okt	34567	36388,682	1821,682	1821,682	0,053
2015	Nov	33672	36376,423	2704,423	2704,423	0,080
2015	Des	58633	36364,163	22268,837	22268,837	0,380
2016	Jan	42485	36351,904	-6133,096	6133,096	0,144
2016	Feb	37522	36339,645	-1182,355	1182,355	0,032
2016	Mar	36059	36327,386	268,386	268,386	0,007
2016	Apr	40758	36315,126	-4442,874	4442,874	0,109
2016	Mei	35262	36302,867	1040,867	1040,867	0,030
2016	Jun	33151	36290,608	3139,608	3139,608	0,095
2016	Jul	24613	36278,349	11665,349	11665,349	0,474
2016	Agt	30961	36266,089	5305,089	5305,089	0,171
2016	Spt	35549	36253,830	704,830	704,830	0,020
2016	Okt	35527	36241,571	714,571	714,571	0,020
2016	Nov	33105	36229,312	3124,312	3124,312	0,094
2016	Des	36699	36217,052	-481,948	481,948	0,013
	-		.,		$\sum_{t=1}^{n} \frac{ Xt - Ft }{Xt}$	10,205
					≟t=1 Xt	

Berdasarkan data pada tabel 4.3 diketahui jumlah selisih data aktual dan data ramal yang telah diabsolutkan dibagikan dengan data aktual ($\sum_{t=1}^{n} \frac{|Xt-Ft|}{Xt}$) sebesar 10,205. Maka nilai MAPE nya adalah sebagai berikut:

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{|Xt - Ft|}{Xt} 100$$
$$= \frac{1}{60} * 10,205 * 100$$
$$= 17,008 \%$$

4. Perhitungan MAPE Double Exponential Smoothing Pada metode Double Exponential Smoothing harus dihitung satu – persatu nilai MAPE mulai dari $\alpha=0,1$ sampai dengan $\alpha=0,9$ kemudian dipilih nilai MAPE yang terkecil. Berikut perhitungan MAPE dengan $\alpha=0,1$.

Tabel 4.4 Tabel Perhitungan MAPE *Double Exponential Smoothing*

Tahun	Bulan	Xt	Ft	Xt-Ft	Xt-Ft	Xt-Ft /Xt
2012	Jan	41391	0,000	0,000	0,000	0,000
2012	Feb	33712	41391,000	-7679,000	7679,000	0,228
2012	Mar	45506	39855,200	5650,800	5650,800	0,124
2012	Apr	30945	40908,570	-9963,570	9963,570	0,322
2012	Mei	49481	38895,574	10585,426	10585,426	0,214
2012	Jun	35681	40892,742	-5211,742	5211,742	0,146
2012	Jul	31201	39836,330	-8635,330	8635,330	0,277
2012	Agt	24260	38043,083	13783,083	13783,083	0,568
2012	Spt	34689	35133,932	-444,932	444,932	0,013
2012	Okt	36619	34754,581	1864,419	1864,419	0,051
2012	Nov	43720	34832,650	8887,350	8887,350	0,203
2012	Des	29005	36333,950	-7328,950	7328,950	0,253
2013	Jan	55351	34680,864	20670,136	20670,136	0,373
2013	Feb	32784	38554,305	-5770,305	5770,305	0,176
2013	Mar	41229	37346,359	3882,641	3882,641	0,094
2013	Apr	41393	38011,299	3381,701	3381,701	0,082
2013	Mei	35400	38614,878	-3214,878	3214,878	0,091
2013	Jun	27293	37932,958	10639,958	10639,958	0,390
2013	Jul	27555	35733,873	-8178,873	8178,873	0,297
2013	Agt	25641	33920,606	-8279,606	8279,606	0,323
2013	Spt	28739	32005,403	-3266,403	3266,403	0,114
2013	Okt	31414	31010,045	403,955	403,955	0,013
2013	Nov	45492	30716,094	14775,906	14775,906	0,325
2013	Des	47171	33300,574	13870,426	13870,426	0,294
2013	Jan	19376	35851,716	16475,716	16475,716	0,850
2014	Feb	34782	32472,334	2309,666	2309,666	0,066
2014	Mar	39863	32685,271	7177,729	7177,729	0,180
2014	Apr	49502	33894,918	15607,082	15607,082	0,315
2014	Mei	40108	36862,212	3245,788	3245,788	0,081
2014	Jun	37822	37513,319	308,681	308,681	0,008
2014	Jul	25984	37609,462	11625,462	11625,462	0,447
2014	Agt	33629	35321,863	-1692,863	1692,863	0,050
2014	Spt	35196	34904,529	291,471	291,471	0,008
2014	Okt	33622	34867,134	-1245,134	1245,134	0,037
2014	Nov	43882	34525,332	9356,668	9356,668	0,213

			_			
Tahun	Bulan	Xt	Ft	Xt-Ft	Xt-Ft	Xt-Ft /Xt
2014	Des	46249	36291,439	9957,561	9957,561	0,215
2015	Jan	38086	38271,292	-185,292	185,292	0,005
2015	Feb	31334	38322,150	-6988,150	6988,150	0,223
2015	Mar	48080	37010,583	11069,417	11069,417	0,230
2015	Apr	39419	39240,648	178,352	178,352	0,005
2015	Mei	45311	39403,194	5907,806	5907,806	0,130
2015	Jun	36843	40713,414	-3870,414	3870,414	0,105
2015	Jul	29438	40127,069	10689,069	10689,069	0,363
2015	Agt	32652	38138,288	-5486,288	5486,288	0,168
2015	Spt	29309	37083,173	-7774,173	7774,173	0,265
2015	Okt	34567	35515,618	-948,618	948,618	0,027
2015	Nov	33672	35235,432	-1563,432	1563,432	0,046
2015	Des	58633	34822,798	23810,202	23810,202	0,406
2016	Jan	42485	39469,255	3015,745	3015,745	0,071
2016	Feb	37522	40194,924	-2672,924	2672,924	0,071
2016	Mar	36059	39813,016	-3754,016	3754,016	0,104
2016	Apr	40758	39188,160	1569,840	1569,840	0,039
2016	Mei	35262	39590,536	-4328,536	4328,536	0,123
2016	Jun	33151	38828,934	-5677,934	5677,934	0,171
2016	Jul	24613	37754,168	13141,168	13141,168	0,534
2016	Agt	30961	35129,976	-4168,976	4168,976	0,135
2016	Spt	35549	34168,810	1380,190	1380,190	0,039
2016	Okt	35527	34275,788	1251,212	1251,212	0,035
2016	Nov	33105	34370,772	-1265,772	1265,772	0,038
2016	Des	36699	33974,871	2724,129	2724,129	0,074
					$\sum_{t=1}^{n} \frac{ Xt - Ft }{Xt}$	10,851

Berdasarkan data pada tabel 4.4 diketahui nilai $\sum_{t=1}^n \frac{|Xt-Ft|}{Xt}$ sebesar 8,706. Maka nilai MAPE nya adalah sebagai berikut:

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \frac{|Xt - Ft|}{Xt} 100$$
$$= \frac{1}{60} * 10,851 * 100$$
$$= 18,084\%$$

Tabel 4.5 Tabel hasil MAPE Double Exponential

Alfa	MAPE
0,1	18,084
0,2	19,422
0,3	21,219
0,4	22,693
0,5	24,036
0,6	25,294
0,7	26,751
0,8	28,155
0,9	31,280

Berdasarkan data pada tabel 4.5 dari keseluruhan nilai MAPE metode *Double Exponential Smoothing*, yang terkecil antara $\alpha=0.1$ sampai $\alpha=0.9$ terdapat pada $\alpha=0.1$ yaitu sebesar 18,084%, maka data yang digunakan adalah hasil peramalan dengan $\alpha=0.1$.

4.4 Perhitungan Sistem

1. Input data

Berikut adalah form input data yang digunakan untuk menginputkan data hasil produksi. Pada form ini user bisa menginputkan, merubah dan menghapus data produksi.

Gambar 4.1 Input Data Training

Pada gambar 4.1 dapat dilihat data yang telah diinputkan, disini peneliti menginputkan 60 data produksi dari tahun 2012 sampai dengan 2016 yang dijadikan sebagai data training untuk memprediksikan hasil produksi teh pada bulan berikutnya menggunakan metode *Least Square* dan *Double Exponential smoothingi*.

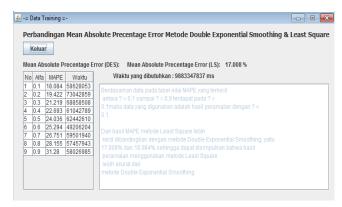
2. Perhitungan Metode Least Square

Proses	gan Least S	lean Absolute	eiuai	ktu: 98833		Ramalan Bul	an Berikutnya				
110000	intuing in	oun rusoute	r recentage :				an Ke-Januari		04.793 Kg		
No	Tahun	Bulan	Produksi	Х	XY	X*2	Y	Selisih	Absolut	Abs/Y	٦
1	2012	Januari	41391	-59	-2442069	3481	36940.348	-4450.652	4450.652	0.108	
2	2012	Februari	33712	-57	-1921584	3249	36928.088	3216.088	3216.088	0.095	П
3	2012	Maret	45506	-55	-2502830	3025	36915.829	-8590.171	8590.171	0.189	П
4	2012	April	30945	-53	-1640085	2809	36903.57	5958.57	5958.57	0.193	П
5	2012	Mei	49481	-51	-2523531	2601	36891.311	-12589.689	12589.689	0.254	П
6	2012	Juni	35681	-49	-1748369	2401	36879.051	1198.051	1198.051	0.034	П
7	2012	Juli	31201	-47	-1466447	2209	36866.792	5665.792	5665.792	0.182	
В	2012	Agustus	24260	-45	-1091700	2025	36854.533	12594.533	12594.533	0.519	П
9	2012	September	34689	-43	-1491627	1849	36842.274	2153.274	2153,274	0.062	П
10	2012	Oktober	36619	-41	-1501379	1681	36830.014	211.014	211.014	0.006	П
11	2012	Nopember	43720	-39	-1705080	1521	36817.755	-6902.245	6902.245	0.158	П
12	2012	Desember	29005	-37	-1073185	1369	36805.496	7800.496	7800.496	0.269	٦
13	2013	Januari	55351	-35	-1937285	1225	36793.237	-18557.763	18557.763	0.335	П
14	2013	Februari	32784	-33	-1081872	1089	36780.977	3996.977	3996.977	0.122	П
15	2013	Maret	41229	-31	-1278099	961	36768.718	-4460.282	4460.282	0.108	٦
16	2013	April	41393	-29	-1200397	841	36756.459	-4636.541	4636.541	0.112	П
17	2013	Mei	35400	-27	-955800	729	36744.2	1344.2	1344.2	0.038	П

Gambar 4.2 Perhitungan Metode Least Square

Seperti yang ditampilkan pada gambar 4.2, ketika user menekan button proses maka sistem akan memproses data training yang telah diinputkan menggunakan metode *Least Square* dengan hasil prediksi sebesar 36204,793 Kg.

 Form Perhitungan Metode Double Exponential Smoothing Form berikut merupakan perhitungan peramalan produksi dengan metode *Double Exponential Smoothing*. Pada form ini user bisa menghitung prediksi hasil produksi teh mulai dari alfa 0,1 sampai dengan 0,9.

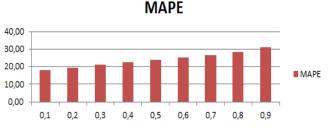

Proses												
	Hitung A	lfa: 0.1 ▼	Mean Ab	solute Prece	ntage Error	18.084 %		n Bulan Beriki n Bulan Ke-Fe		h 34364 293	l Kg	
No	Tahun	Bulan	Produksi	St	St	A	В	Prediksi(Y')	Selisih	Absolut	Abs/Y	
140	2012			41391 000	41391.0	41391.0	0.0		0.0	0.0	0.0	Н
2	2012	Januari	41391 33712	41391.000	41391.0		-76.791	41391.0	-7679.0	7679.0	0.0	_
	2012	Februari		41111 390		39931.99				5650 801		-
3			45506		41293.928		-20.283	39855.2	5650.801		0.125	_
4	2012	April	30945	40094.751	41174.011	39015.491	-119.918	40908.57	-9963.57	9963.57	0.322	
5	2012	Mei	49481	41033.376	41159.948	40906.804	-14.064	38895.58	10585.42	10585.42	0.214	_
6	2012	Juni	35681	40498.138	41093.767	39902.509	-66.182	40892.74	-5211.74	5211.74	0.147	
7	2012	Juli	31201	39568.424	40941.233	38195.615	-152.535	39836.33	-8635.331	8635.331	0.277	
8	2012	Agustus	24260	38037.582	40650.868	35424.297	-290.366	38043.08		13783.081	0.569	
9	2012	September	34689	37702.724	40356.054	35049.395	-294.815	35133.94	-444.941	444.941	0.013	
10	2012	Oktober	36619	37594.352	40079.884	35108.82	-276.171	34754.58	1864.42	1864.42	0.051	
11	2012	Nopember	43720	38206.917	39892.588	36521.246	-187.297	34832.65	8887.35	8887.35	0.204	
12	2012	Desember	29005	37286.725	39632.002	34941.448	-260.587	36333.95	-7328.95	7328.95	0.253	
13	2013	Januari	55351	39093.152	39578.117	38608.188	-53.885	34680.87	20670.13	20670.13	0.374	П
14	2013	Februari	32784	38462,237	39466.53	37457.945	-111.589	38554.31	-5770.31	5770.31	0.177	
15	2013	Maret	41229	38738.913	39393.769	38084.058	-72.762	37346.36	3882.64	3882.64	0.095	ī
16	2013	April	41393	39004.322	39354.825	38653.82	-38.945	38011.3	3381.7	3381.7	0.082	٦
17	2013	Mei	35400	38643.890	39283.732	38004.048	-71.094	38614.88	-3214.88	3214.88	0.091	Т
18	2013	Juni	27293	37508.801	39106.239	35911.363	-177.494	37932.96	-10639.96	10639.96	0.39	٦
19	2013	Juli	27555	36513 421	38846 958	34179 885	-259 282	35733.87	8178 871	8178 871	0.297	-

Gambar 4.3 Perhitungan Metode DES

Seperti yang ditampilkan pada gambar 4.3, ketika user menekan button proses maka sistem akan memproses data training yang telah diinputkan menggunakan metode *Double Exponential Smoothing* dan akan menampilkan hasil prediksi, nilai MAPE, dan kecepatan proses prediksi. Pada gambar 4.3 yang ditampilkan adalah prediksi menggunakan $\alpha = 0.1$ dengan hasil prediksi sebesar 34364,293 Kg.

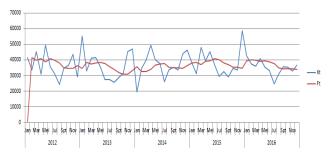
4. Form Perbandingan MAPE dan Kecepatan Proses

From berikut merupakan perbandingan MAPE serta kecepatan dari setiap proses peramalan. Serta akan ditampilkan kesimpulan metode mana yang nantinya akan digunakan untuk menghitung prediksi hasil produksi teh di Kebun Bantaran.

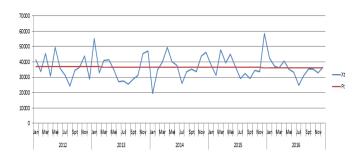


Gambar 4.4 Hasil MAPE dan Kecepatan Proses

Berdasarkan uji coba pada gambar 4.4 didapat perbandingan antara metode *Double Exponential Smoothing* dan *Least Square*. Pada metode *Double Exponential* Smoothing nilai alfa antara 0,1 sampai dengan 0,9 yang memiliki tingkat eror terkecil adalah alfa 0,1 dengan nilai MAPE = 18,084 % dengan Kecepatan 58628053 ms. Sedangkan pada metode *Least Square* nilai MAPE = 17,008 % dengan kecepatan = 9883347837 ms.


5. Tabel dan Grafik Perbandingan Hasil Prediksi

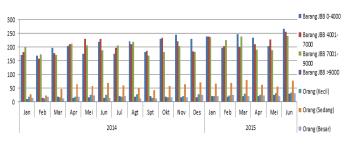
Berdasarkan data *training* yang telah diinputkan, maka dapat di hasilkan tabel dan grafik prediksi hasil produksi teh antara metode *Double Exponential Smoothing* dan *Least Square* dengan data training yang digunakan.


Gambar 4.5 Grafik nilai MAPE DES

Berdasarkan data pada gambar 4.5 data prediksi metode Double Exponential Smoothing nilai α dari 0,1 sampai dengan 0,9 yang digunakan adalah α = 0,1 karena nilai error dari α = 0,1 lebih kecil dibandingkan dengan α yang lain. Oleh karena itu nilai prediksi dari hasil perhitungan α = 0,1 akan dibandingkan dengan data training dalam bentuk grafik begitu juga pada data prediksi metode Least Square akan dibandingkan dengan data training, sehingga akan terlihat mana hasil prediksi yang lebih akurat antara metode Double Exponential Smoothing dan Least Square.

Gambar 4.6 Grafik Perbandingan data Training dan Prediksi DES

Berdasarkan gambar 4.6 dapat dilihat grafik perbandingan antara data training dengan hasil prediksi menggunakan metode *Double Exponential Smoothing* dengan $\alpha = 0,1$. Terlihat bahwa hasil prediksi mengikuti alur dari data training disetiap periodenya, hal ini membuktikan bahwa metode *Double Exponential Smoothing* memiliki tingkat akurasi yang baik untuk memprediksikan hasil produksi teh di Kebun Bantaran Kabupaten Blitar.



Gambar 4.7 Grafik Perbandingan data Training dan Prediksi LS

Berdasarkan gambar 4.7 dapat dilihat grafik perbandingan hasil prediksi metode *Least Square*. Terlihat bahwa hasil prediksi dan data training perbedaannya cukup jauh pada setiap periode, hasil prediksi dari metode *Least Square* cenderung berada di tengah atau rata – rata dari keseluruhan data training. Hal ini membuktikan bahwa metode *Least Square* memiliki tingkat akurasi yang cukup baik untuk memprediksikan hasil produksi teh di Kebun Bantaran Kabupaten Blitar.

4.5 Perbandingan dengan penelitian terdahulu

Sebelumnya pernah ada yang melakukan penelitian yang hampir sama dengan yang peneliti lakukan yaitu penelitian dari Yanuar Adi Kurniawan dan Bowo Nurhadiyono "Komparasi Metode *Least Square* dan *Double Exponential Smoothing* Untuk Menganalisa Pendapatan Retribusi Uji Kendaraan Bermotor". Data yang digunakan merupakan data historis Uji Kendaraan Bermotor pada periode 2014 hinga 2015. Data harian Uji Kendaraan Bermotor dikelompokkan berdasarkan 7 jenis kendaraan yang berbeda berdasarkan JBB dan fungsinya. JBB dibagi menjadi 4kategori terdiri dari: JBB 0-4000, JBB4001-7000, JBB 7001-9000, JBB lebihdari 9000. yang kedua adalah angkutan orang yang dibagi lagimenjadi 3 kategori yaitu angkutan kecil, angkutan sedang, angkutan besar.

Gambar 4.8 Grafik Data Uji Kendaraan

Pada penelitiannya hanya membahas tentang hasil prediksi dan nilai *error* prediksi pada bulan berikutnya dengan hasil nilai MAPE pada metode *Least quare* terkecil 8,744% dan terbesar 17,903%. Sedangkan metode *Double Exponential Smoothing* terkecil 9,723% dan terbesar 20,03%. Hampir semua nilai *error* pada metode *Least Square* lebih kecil dibandingkan dengan metode *Double*

Exponential Smoothing sehingga dalam kasusnya tersebut metode Least Square lebih akurat.

Pada penelitian yang dilakukan peneliti kali ini membahas tentang hasil prediksi nilai error serta kecepatan proses. Kecepatan yang dibandingkan yaitu proses prediksi menggunakan metode Least Square dengan Double Exponential Smoothing dari α 0,1 sampai dengan α 0,9. Data yang digunakan adalah data hasil produksi teh pada tahun 2012 sampai dengan 2016.

Gambar 4.9 Grafik Data Hasil Produksi teh

Pada penelitan ini dihasilkan nilai *error* terkecil pada metode *Double Exponential Smoothing* terdapat pada alfa 0,1 dengan nilai MAPE = 18,084 % dan Kecepatan 58628053 ms. Sedangkan pada metode *Least Square* nilai MAPE = 17,008 % dengan kecepatan = 9883347837 ms.

BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan

Berdasarkan penelitian yang sudah peneliti lakukan, dapat ditarik kesimpulan sebagai berikut:

- 1. Dari hasil nilai MAPE metode *Double Exponential* smoothing nilai α yang paling optimal adalah α 0,1 dengan nilai MAPE 18,084 % dan nilai α terbesar adalah α 0,9 dengan nilai MAPE 31,280 dan untuk metode *Least Square* nilai MAPEnya adalah 17,008 % sehingga dapat disimpulkan bahwa metode *Least Square* lebih akurat dibandingkan metode *Double Exponential Smoothing* karena nilai MAPE dari metode *Least Square* lebih mendekati dibandingkan dengan metode *Double Exponential Smoothing*.
- 2. Perbedaan antara metode *Double Exponential Smoothing* dan *Least Square* terletak pada data yang digunakan untuk menghitung prediksi. Pada metode *Double Exponential Smoothing* untuk memprediksikan data pada bulan x membutuhkan data sebelum bulan x dan data pada bulan x tersebut, sedangkan untuk metode *Least Square* untuk memprediksikan data pada

- bulan x hanya membutuhkan data pada bulan x tersebut.
- 3. Proses prediksi pada sistem antara perhitungan metode Least Square dan Double Exponential Smoothing pada setiap alfanya lebih cepat metode Double Exponential Smoothing dengan kecepatan proses pada $\alpha=0,1$ yaitu 58628053 ms. Sedangkan pada metode Least Square proses prediksinya adalah 9883347837 ms.

5.2 Saran

Bagi peneliti - peneliti selanjutnya yang akan melakukan penelitian hampir serupa dan mengembangkan penelitian ini adalah mencoba menggunakan metode lain selain metode *Double Exponential Smoothing* dan *Least Square* serta membandingkannya serta mencoba data lain dengan data training yang lebih banyak agar data prediksi menjadi lebih akurat, karena jumlah data dapat mempengaruhi hasil prediksi.

DAFTAR PUSTAKA

Assauri, Sofyan. 1991. *Teknik dan Metode Peramalan*. Jakarta : LPFE UI.

Budi Santosa. 2007. *Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis*. Yogyakarta, Indonesia: Graha Ilmu.

Danar Putra Pamungkas. 2016. Implementasi Metode Least Square untuk prediksi penjualan tahu pong. Jurnal SIMETRIS. Vol 7, No. 2, jurnal.umk.ac.id/index. php/simet/article/viewFile/788/762, 07 Mei 2017.

Fajar Riska Perdana. 2016. Perbandingan Metode Double Exponential Smoothing dengan Triple Exponential Smoothing Pada Peramalan Penjualan Rokok (Studi Kasus Toko Utama Lumajang).

digilib.unmuhjember.ac.id/download.php?id=2008,
07 Mei 2017.

Muhammad Ihsan Fauzi Rambe. 2014. *Perancangan Aplikasi Peramalan Persediaan Obat - Obatan Menggunakan Metode Least Square*. Pelita Informatika Budi Darma.

Riyanto. 2010. Sistem Informasi Penjualan Dengan PHP dan MySql. Yogyakarta: Gava Media.

S. Makridakis. 1992. *Analisis Runtun Waktu*. Jakarta: Karunika.

Setyamidjaja, D. 2000. *Teh Budidaya dan Pengolahan Pasca Panen*. Yogyakarta: Kanisius.

Subagyo, Pangestu. 1999. Forecasting (Konsep dan Aplikasi). Yogyakarta: BPFE.

Sudjana. 1986. Metode Statistika. Bandung: Tarsito.

Yanuar A.K. dan Bowo Nurhadiyono. 2016." Komparasi Metode Least Square dan Double Exponential Smoothing Untuk Menganalisis Pendapatan Retribusi Uji Kendaraan Bermotor". eprints.dinus.ac.id/18158/2/jurnal_17653.pdf, 07 Mei 2017.