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significant expansion in timber buildings all over the world. Moreover, the development of new timber products in the last few
decades (cross-laminated timber, for instance, at the beginning of the 1980s) encouraged advances in the form and especially the
height of timber buildings, which made timber structures competitive with other structures built with classical building materials.
Today, timber buildings with a height up to 20 stories can be built in a cross-laminated structural system. Furthermore, combining
timber structural elements with other building materials (for instance, with glass, brick, concrete, or steel) can open new
perspectives on attractive architectural forms of such hybrid timber buildings.

This Special Issue of Forests will present current research from different fields of timber buildings, such as experimental and
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elements, as well as strengthening methods of old timber structures. The second aim of this Special Issue is to emphasize the
importance of interdisciplinary and integrative approaches when considering the issue of timber building design. Therefore, topics
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daylighting, indoor environmental quality, life-cycle assessment, and other parameters, are also welcome.
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Defect Index of Timberwork in House, Korea

by {_" Junmo Park and {_" Deokseok Seo

Forests 2021, 12(7), 896; https:/idoi.org/10.3390/f12070896 - 08 Jul 2021

Viewed by 374

Abstract Wood is a material that is familiar to humans and environment-friendly, and it is used widely as a building material.
However, as the dispute over housing defects have increased in Korea, various defects have occurred in timberwork and have
become disputes. Notwithstanding, efforts [...] Read more.

(This article belongs to the Special Issue Timber and Construction Structure)
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Analytical and Numerical Verification of Vibration Design in Timber Concrete Composite
Floors

by {“ Nikola Perkovi¢, (" Vlatka Raj¢i¢ and {_" Jure Barbali¢

Forests 2021, 12(6), 707; https:/idoi.org/10.3390/f12060707 - 29 May 2021

Viewed by 702

Abstract The TCC concept has been studied and developed over the past decades. The variety of solutions shows the
meaningfulness and functionality of this system, as well as the continuous work of scientists over time. To benefit from these
advantages, the composite needs to [...] Read more.

(This article belongs to the Special Issue Timber and Construction Structure)
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Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures
under Different Preloads

by { " Zilong Zhuang, {_* Yabin Yu, {_" Ying Liu, " Jiawei Chen and {_" Zhengguang Wang

Forests 2021, 12(6), 652; https://doi.org/10.3390/f12060652 - 21 May 2021

Viewed by 396

Abstract In industrial applications, bolt connections are simple and economical, contributing to their popularity for use in wood
packing boxes. However, they can easily fail when subjected to a continuous vibrational load under usual working conditions such
as transportation and hoisting. Based on an [...] Read more.

(This article belongs to the Special Issue Timber and Construction Structure)

» Show Figures

The Prediction of Stiffness Reduction Non-Linear Phase in Bamboo Reinforced Concrete
Beam Using the Finite Element Method (FEM) and Artificial Neural Networks (ANNs)

by @ Muntar

Forests 2020, 11(12), 1313; https://doi.org/10.3390/f11121313 - 10 Dec 2020

Viewed by 500

Abstract This paper discusses the reduction of the stiffness of bamboo reinforced concrete (BRC) beams to suppeort the use of
bamboo as an environmentally friendly building material. Calculation of cross-section stiffness in numerical analysis is very
important, especially in the non-linear phase. After the [...] Read more.
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Loosening of Bolted Connections under Transverse Loading in Timber Structures

by { " Jiawei Chen, {_" Honghong Wang, {_" Yabin Yu, {_" Ying Liu and {_* Dong Jiang

Forests 2020, 11(8), 816; https://doi.org/10.3390/f11080816 - 28 Jul 2020

Cited by 2 | Viewed by 856

Abstract Bolted joints are widely used in timber structures, and the loosening of bolt connections will reduce the structural
performance. In this paper, a mechanical model of bolt connection for timber structures is established, and the process of bolt
loosening under a transverse load [...] Read more.
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Influence of Board Density on the Physical and Mechanical Properties of Bamboo Oriented
Strand Lumber

by L Yuhui Sun, {_" Yahui Zhang, {_" Yuxiang Huang, {_" Xiaoxin Wei and {_" Wenji Yu

Forests 2020, 11(5), 567; https://doi.org/10.3390/f11050567 - 18 May 2020

Cited by 2 | Viewed by 850

Abstract The process of bamboo-oriented strand lumber (BOSL) represents one of the best opportunities for automation,
property control and consistency, and high utilization of material from abundant, fast-growing, and sustainable bamboo. In this
study, BOSLs were prepared, with reference to the preparation process of [...] Read more.
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» Show Figures

Review

Jump to: Research

e

A Review of Architectural and Structural Design Typologies of Multi-Storey Timber
Buildings in Europe

by e Vesna Zegarac Leskovar and {_" Miroslav Premrov

Forests 2021, 12(6), 757; https:/idoi.org/10.3390/f12060757 - 08 Jun 202
Cited by 1 | Viewed by 632

Abstract Numerous countries across the globe have witnessed the recent decades’ trend of multi-storey timber buildings on the
rise, owing to advances in engineering sciences and timber construction technologies. Despite the growth and numerous
advantages of timber construction, the global scale of multi-starey timber [...] Read more.

(This article belongs to the Special Issue Timber and Construction Structure)
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Structural Vulnerability Assessment of Heritage Timber Buildings: A Methodological
Proposal

by @Amirhosein Shabani, {_" Mahdi Kioumarsi, ﬁ Vagelis Plevris and @ Haris Stamatopoulos
Forests 2020, 11(8), 881; https://doi.org/10.3390/111080881 - 13 Aug 2020
Cited by 4 | Viewed by 1347

Abstract The conservation of heritage structures is pivotal not only due to their cultural or historical importance for nations, but
also for understanding their construction techniques as a lesson that can be applied to contemporary structures. Timber is
considered to be the oldest organic [...] Read more.
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Abstract: This paper discusses the reduction of the stiffness of bamboo reinforced concrete (BRC)
beams to support the use of bamboo as an environmentally friendly building material. Calculation
of cross-section stiffness in numerical analysis is very important, especially in the non-linear phase.
After the initial crack occurs, the stiffness of the cross-section will decrease with increasing load and
crack propagation. The calculation of the stiffness in the cross-section of the concrete beam in the
non-linear phase is usually approximated by giving a reduction in stiffness. ACI 318-14 provides
an alternative, reducing the stiffness of the plastic post-linear beam section through the moment of
inertia (I) of the beam section for elastic analysis between 0.50I;—0.25I;. This study aims to predict the
value of the reduction in the stiffness of the BRC beam section in the non-linear phase through the
load-displacement relationship of experimental results validated by the Finite Element Method (FEM)
and the Artificial Neural Networks (ANN) method. The experiment used 8 BRC beams and one
steel-reinforced concrete (SRC) beam of singly reinforced with a size of 75 mm X 150 mm x 1100 mm.
The beams were tested using a four-point loading method. The analysis results showed that the value
of the stiffness reduction in the beam cross-sectional in the non-linear phase ranged from 0.5I;—-0.05I,
for BRC beams, and 0.751,-0.401; for SRC beams.

Keywords: stiffness reduction; bamboo reinforced concrete (BRC); finite element method (FEM);
artificial neural networks (ANN)

1. Introduction

The impact of increasing industrial development is that it can cause pollution of air, water, soil,
and noise. The use of industrial building materials such as ceramics, steel, concrete, and other materials
has led to an increase in environmental pollution. The procurement of wood forests or bamboo forests
must be done as a counterweight to environmental pollution. Pandey et al. (2017) [1] and Mostafa et al.
(2020) [2] revealed that an average tree absorbs one ton of CO, and produces 0.7 tons of O, for every
cubic meter of growth. The use of environmentally friendly building materials such as wood and
bamboo must be done. Bamboo is a forest product that provides high economic and ecological value
to the community. Bamboo also has enormous potential with promising prospects [3]. Bamboo is one
of the commodities produced by Community Forests. However, research on the behavior of bamboo
as a building material is mandatory, such as research on the stiffness of bamboo reinforced concrete
(BRC) beams.

The stiffness reduction factor is a multiplier to reduce the moment of inertia in gross cross-sectional,
and the gross cross-sectional area remains constant. These factors are conservatively enforced by
various concrete standards to account for the loss of stiffness in the concrete cross-section due to the
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cracking of the concrete. The stiffness of the beam cross-section in the elastic phase or linear phase
indicates the full section flexural stiffness, E.l;, whereas in the non-linear phase or after the initial crack,
the gross cross-section bending stiffness is reduced to the effective flexural stiffness, Eclg. The stiffness
reduction factor is significantly influenced by the amount of moment or the applied load, while the
stiffness reduction factor does not differ from the amount of reinforcement [4]. ACI 318M-14 [5] shows
that the gross section flexural stiffness, E.I,, is reduced to obtain the effective flexural stiffness, E.I,
which causes cracking and other softening effects. As the moment in the concrete section increases,
the flexural stiffness will be reduced due to the cracks that continue to propagate and spread. ACI
318M-14 [5] provides stiffness reduction limits for elastic analysis with a moment of inertia limits
between 0.25[,-0.5]; for concrete beams. The equation for the moment of inertia effective (I,) is
determined in ACI 318-05 [5] Section 9.5.2.3, as shown in Equation (1).

(-

a a

where I; = moment of inertia of the gross concrete section and I, = moment of inertia of the crack
section including the reinforcement. The moment of inertial effective (I.) as shown in Equation (1) will
decrease as the moment that occurs, M,. Calculation of the moment of inertia of the crack cross-section,
Iy at Equation (1) must pay attention to the number of reinforcement installed. However, the amount
of reinforcement is not determined at the initial design stage.

The process of stiffness reduction in the beam section starts from the “no crack” and “cracked”
conditions in the section. In the service load condition or the elastic condition, the stiffness of the beam
section is in full condition, even though the moment due to the load continues to increase. In the elastic
condition, the moment that occurs (M,) is still below the moment of cracking (M,,), or the tensile stress
of the concrete is still below the modulus of rupture of the concrete beam cross-section, f. In the elastic
conditions, the difference in stiffness between two different types of beams usually occurs not due
to reduced inertia of the cross-section, but due to the properties of the materials used. For example,
the stiffness of bamboo reinforced concrete beams is different from the stiffness of steel-reinforced
concrete (SRC) beams. In the elastic conditions, the stiffness of BRC beams is lower than the stiffness of
SRC beams [6-8]. This is because BRC beams use bamboo reinforcing materials which have elastic
properties and high resilience properties. BRC beams with bamboo reinforcement will be able to
accept high impact loads without causing stress over the elastic limit, even though displacement has
occurred. This indicates that the energy absorbed during loading is stored and released if the material
is not loaded.

Meanwhile, the SRC beam uses steel material that has high stiffness and toughness, so that the
SRC beam in the service load range or elastic condition does not experience displacement or excessive
deformation. Beams that use materials with high stiffness and toughness will be able to withstand
high impact loads or shock loads. If the SRC beam gets an impact load, then some of the energy is
absorbed and some of the energy is transferred.

Research on modeling and stiffness reduction has been carried out by many researchers. Kai
Zhang et al. (2020) [9] investigated the effect of electrochemical rehabilitation (ER) techniques
on the fatigue stiffness of RC beams. The results of his research indicated that electrochemical
rehabilitation (ER) exacerbated bond breakage, thereby reducing the flexural stiffness of RC beams.
Salam Al-Sabah et al. [10] discuss the use of negative stiffness in the failure analysis of concrete beams.
In his research, Salman Al-Sabah et al. concluded that the effective and simple one-dimensional
stress-strain behavior of concrete was used to study concrete blocks with proportional loading, the only
source of non-linearity to consider cracks in concrete. Hong-Song Hu et al. (2016) [11] investigated
the effectiveness of square Concrete filled steel tubular (CFST) rod stiffness, and the results proposed
an equation for the effective stiffness of square CFST rods. Muhtar et al. [7] tested the flexural of
BRC beams and SRC beam:s, the results showed that the stiffness decreased after the initial cracking.
The average stiffness of the BRC beam decreased from 26,324.76 MPa before cracking to 6581.20 MPa



Forests 2020, 11, 1313 3of 27

after collapse [7], while the average value of SRC beam stiffness decreased from 30,334.11 MPa before
cracking to 16,873.35 MPa after the collapse.

K.A. Patela et al. (2014) [12], in their paper, provide an explicit expression for the effective moment
of inertia by considering cracks for reinforced concrete beams (RC) with uniformly distributed loads.
The proposed explicit expressions can be used to predict short-run displacement in-service load.
The sensitivity analysis shows a substantial dependence of the effective moment of inertia on the
selected input parameter. Displacement is an important parameter for examining the serviceability
criteria of structures. The short-term displacement is generally calculated using the effective moment
of inertia across the span at the service load [12]. Chunyu Fu (2018) [13] presents a method of
estimating the stiffness of cracked beams based on the stress distribution. In his conclusion, he said
that the presence of cracks causes a nonlinear stress distribution along the beam section, which
changes the neutral axis of the cross-section and further affects the stiffness of the beam. J.R. Pique
(2008) [14] concluded that when the design is controlled by the minimum reinforcement, especially in
the beam, special attention should be paid to the calculation of the real period and maximum distortion.
The effective stiffness of the beam with the minimum steel ratio is much lower than that obtained by the
proposed reduction factor. As a result, the actual period and actual maximum distortion can be greater.
Akmaluddin et al. (2012) [15] concluded that the moment of crack and the value of the moment of
inertia of the crack was significantly affected by the presence of bamboo reinforcement in the beam.
The experimental results show that the crack moment varies from 0.3 to 0.7 from the ultimate moment.
The experimental and theoretical crack moment ratio varies from 0.90 to 1.42. ilker Kalkan (2013)
and [16] concluded that the effective moment of inertia and load-displacement curve analysis is highly
dependent on the crack moment used in the expression analysis of the effective moment of inertia.
Therefore, the experimental cracking moment of the beam should be used in the calculation of the
effective moment of inertia for a more accurate comparison of the different analytical methods. Chunyu
Fu et al. (2020) [17] concluded that cracking of concrete causes a gradual change in the distribution
of strain along with the cross-sectional height of reinforced concrete beams, which in turn affects the
instantaneous stiffness. The instantaneous stiffness proved to be highly dependent on the number and
depth of cracks. This dependence can be accurately reflected by the method proposed by simulating
a gradual change in the concrete strain distribution. Xiuling Feng et al. (2013) [18] examines the
reduction factor of flexural stiffness in reinforced concrete columns with an equiaxial cross-section
and suggests that the reduction factor is proposed by considering the nonlinear characteristics of the
material and its geometric nonlinearity.

The difference in the nonlinear characteristics of the material used in the BRC beam and the SRC
beam greatly determines the flexural behavior of the beam. Bamboo reinforced concrete beams have
low stiffness and tend to be large displacement. The solution to increasing the stiffness of BRC beams is
to use shear reinforcement and the principle of confined concrete [7,19]. In the linear elastic condition,
the BRC beam has shown a large displacement, but when the ultimate load is reached and the loading
is released gradually, the displacement tends to return to zero. In this study, the reduction of stiffness
in the non-linear phase was analyzed through the load vs. displacements that were validated using the
finite element method (FEM) and the Artificial Neural Networks (ANN) method. It is suspected that
the reduction of the cross-sectional stiffness of the BRC beam is different from the reduction in the
stiffness of the SRC beam section. The parameter of the moment of inertia of the cross-section becomes
a benchmark in determining the reduction of stiffness according to ACI-318M-14 [5].

2. Materials and Methods

2.1. Treatment of Materials

In this study, the treatment of bamboo material as concrete reinforcement is an important thing to
do. The bamboo used is the bamboo “petung” (Dendrocalamus asper) which is between three and five
years old [20-22]. The part of bamboo that is used as reinforcing of concrete is 6-7 m long from the
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base of the bamboo stem [23]. Bamboo is cut according to the size of the bamboo reinforcement to be
used, which is 15 x 15 mm?2. Then, bamboo is soaked for +20-30 days [21]. After soaking, bamboo is
dried in free air until it has an absorption level of +12%.

Application of adhesive or waterproof coating [24,25] is done after the bamboo reinforcement is
cleaned and trimmed according to the planned size. The application of a waterproof layer is carried
out to prevent the hydrolysis process between bamboo and concrete. Sand sprinkling on bamboo
reinforcement is done when the adhesive is half dry to make it stronger [21,26]. The application of
sand aims to increase the adhesion strength of bamboo reinforcement to concrete.

An installation of a hose-clamp at both ends of the bamboo reinforcement is done to match the
concept of hooks or bends in steel reinforcement. An installation of the hose-clamp only on tensile
reinforcement is done to increase bond-stress between bamboo reinforcement and concrete [27,28].
The tensile force on the bamboo reinforcement will be distributed to the concrete through the hose-clamp,
which functions as a shear connector. Bamboo treatment is shown in Figure 1.

® Sand

Sikadur®-752

¢ Bamboo reinforcement

with Sikadur®-752

Bamboo reinforcement
with Sikad ur®-752
coating and sand

Bamboo reinforcement
with hose-clamp

Figure 1. The materials and treatments of bamboo reinforcement.

2.2. Materials

The concrete mixture used in this study is a normal concrete mixture consisting of Portland
Pozzolana Cement (PPC), sand, coarse aggregate, and water with a proportion of 1:1.8:2.82:0.52. Sand
and gravel come from the Jember area of Indonesia. The cylindrical specimen measures 150 mm in
diameter and 300 mm in height. The cylindrical specimens were press-tested using a Universal Testing
Machine (UTM) with a capacity of 2000 kN after the concrete was 28 days old. The procedure for the
cylinder specimen compressive test follows ASTM C 39 [29]. The average compressive strength of
cylindrical concrete is 31.31 MPa with an average weight of 125.21 N. The properties and characteristics
of the concrete are shown in Table 1.

Table 1. Material properties of reinforcing and concrete.

Bar Typeand  Diameter, Modulus of Poisson’s  Tensile Strength, Compressive
Concrete d (mm) Elasticity (E), (MPa) Ratio (v) fy (MPa) Strength, f . (MPa)
Bamboo 015 x 15 17,235.74 0.20 126.68 -

Steel ¢8 207,735.92 0.25 392.28 -
Concrete - 26,324.79 0.30 - 31.31

O: a sign of the rectangular cross-sectional shape of bamboo reinforcement.

The tensile test of bamboo reinforcement produces the average tensile stress of 126.68 N/mm?
with an average strain of 0.0074. The modulus of elasticity of bamboo reinforcement was calculated
using the formula E = ¢/¢ and obtained 17,235.74 MPa. The modulus of elasticity of steel is obtained
by 207,735.92 MPa. The properties and characteristics of bamboo and steel reinforcement are shown in
Table 1.
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The adhesive layer or waterproof coating used was Sikadur®-752 produced by PT. SIKA
Indonesia [30]. The specifications for the adhesive sikadur®-752 are shown in Table 2. Installation of
hose-clamp on bamboo reinforcement is done when the waterproof layer is half dry [21]. The diameter

of the hose-clamp used is

%” made in Taiwan.

Table 2. The specification of Sikadur®-752 [30].

Components Properties
Color Yellowish
Density Approx. 1.08 kg/L
Mix comparison (weight/volume) 2:1
Pot life at +30 °C 35 min
. 62 MPa at 7 days (ASTM D-695)
Compressive strength 64 MPa at 28 days

Tensile strength
Tensile Adhesion Strength

Coefficient of Thermal Expansion

Modulus of elasticity

40 MPa at 28 days (ASTM D-790)

2 MPa (Concrete failure, over mechanically prepared concrete surface)

—20°Cto +40°C
89 x 107° per °C
1060 MPa

2.3. Experimental Procedure

The test object consisted of 9 beams with a size of 75 mm X 150 mm X 1100 mm, consisting of
8 bamboo reinforced concrete beams (BRC) and one steel-reinforced concrete beam (SRC). Bamboo
reinforcement is installed as tensile reinforcement with a reinforcement area of 450 mm?. The steel
reinforcement used has a diameter of 8 mm with an area of Ag = 100.48 mm?. The beam geometry and
reinforcement detail of the BRC and SRC beams are shown in Figure 2.

P
%P l %P [_ Bamboo reinforcement 2 o 15x15 mm’®
A\ 4 y
Strain Gauge \L Ay 150 mm

: ¥ : | N |

LVvDT— ﬁ é me

S50 x5 , %L ! %L 29 |
| I | I I |
BRC Beam
€ L=1000 mm >|
lP
nP %P
v
Strain Gauge Steel bars 220 8
150 b ’x/ \A eel bars mm f «
0| —
" __25mm
_Q_ LVvDT— ‘ L 75mW1
S0 wL | B30 —
[ I I ]
SRC Beam
& L=1000 mm >|

Figure 2. Reinforcement details and beam test settings.

The beam flexural test method was carried out using the four-point method [31]. The test
arrangement and load position are shown in Figure 2. Strain gauges are installed on the bamboo
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reinforcement at a distance of %L from the support of the beam. Beam displacement measures use
Linear Variable Displacement Transducers (LVDT) with a distance of 1L from the beam support.

The loading stages from zero to the collapse of the beam are used as a hydraulic jack and a load
cell connected to a load indicator tool. The load reading on the load indicator is used as a hydraulic
jack pump controller, displacement reading, and strain reading according to the planned loading stage.
However, when the test object reaches its ultimate load, the displacement reading controls the strain
and load reading, while the pumping of the hydraulic jack continues slowly according to the command
of the displacement reader. The failure pattern was observed and identified by the cracks that occurred,
from the time of the initial crack until the beam collapsed.

2.4. Validation of Numerical Methods

Validation of experimental data using the Finite Element Method (FEM) and Artificial Neural
Networks (ANN). The relationship between load vs. displacement experiment results was validated
by using the finite element method. The procedure used is inputting material data and loading stages
to determine the behavior of the load vs. displacement of BRC beams and SRC beams. The data
input for the loading stages is carried out following the loading stages from laboratory experimental
data. The numerical method used is the finite element method, using the Fortran PowerStation 4.0
program [32]. The theoretical analysis is used to calculate the load causing the initial crack is the elastic
theory (linear analysis) with cross-section transformation. For linear analysis, the input material data
is the modulus of elasticity (E) and Poisson’s ratio (v). The calculation of the modulus of elasticity of
the composites (Ecomp) is shown in Tables 3 and 4. The non-linear phase is approximated by decreasing
the concrete strength from 0.25 to 0.5 for the calculation of the effective stiffness in the plastic plane [5].
In the analysis of the finite element constitutive relationship, the problem-solving method uses the
plane-stress theory. Triangular elements are used to model plane-stress elements with a bidirectional
primary displacement at each point so that the element has six degrees of freedom. The discretization
of the beam plane is carried out using the triangular elements shown in Figure 3 for BRC beams and
Figure 4 for SRC beams.

Table 3. Elasticity Modulus of Composite of BRC beam.

Compressive Dimensions of =~ Modulus of Elasticity of the Elasticity Moqulus
Layer Number Strength of or Laver Material (F) of Composite
Concrete, f'. 4 y (Ecomp)
Concrete, E. Bamboo, E;,
Mpa b (mm) h (mm) (MPa) (MPa) MPa
4th mesh layer 31.31 75 50 26,851.29 0 26,851.29
3rd mesh layer 31.31 75 60 26,851.29 0 26,851.29
2nd mesh layer 31.31 75 15 26,851.29 1723.57 23,140.89
1st mesh layer 31.31 75 25 26,851.29 0 26,851.29
Table 4. Elasticity Modulus of Composite of SRC beam.
Compressive Dimensions of Modulus of Elasticity of the Elasticity Moc.lulus
Layer Number Strength of er Laver Material (E) of Composite
Concrete, ', P y (Ecomp)
Concrete, E. Steel, E;
Mpa b (mm) h (mm) (MPa) (MPa) MPa
4th mesh layer 31.31 5 50 26,851.29 0 26,851.29
3rd mesh layer 31.31 75 67 26,851.29 0 26,851.29
2nd mesh layer 31.31 75 8 26,851.29 207,735.92 43,209.32

1st mesh layer 31.31 75 25 26,851.29 0 26,851.29
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Figure 3. Discretization of the triangular element on the bamboo reinforced concrete (BRC) beam.
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Figure 4. Discretization of the triangular element on the steel-reinforced concrete (SRC) beam.

The modulus of elasticity (E) for each layer is calculated according to the condition of the material.
Layers of concrete and bamboo reinforcement are calculated using the following Equation (2) [33].

E. = Eb'vb + Ec-Ve (2)

where E, = the equivalent elasticity modulus of BRC beam, E;, = elastic modulus of bamboo
reinforcement, E. = modulus of elasticity of concrete, V}, = relative volume of bamboo reinforcement
in calculated layers, and V. = relative volume of concrete in calculated layers. The stress-strain
relationship for plane-stress problems has the shape of an equation such as Equation (3).

Oy E 1 v 0 Ex

o =——7— v 1 0 € 3)
y (1 + 1/2) 1—v y

Txy 00 5 [Urwy

where E is the modulus of elasticity and v is the Poisson’s ratio. And the principal stresses in two
dimensions are calculated by Equation (4).

ox+o Oy —0y\?
012 = s (u) + Txyz = Omax 4)
2 2
The simulation and steps for preparing a FEM analysis with the Fortran PowerStation 4.0
program [32] are summarized as follows:

Step1: Discretization of BRC and SRC beam planes with the discretization of triangular elements,
the numbering of triangular elements, and the numbering of nodal points as shown in Figures 3
and 4.

Step2: Calculation and collection of geometry and material data, such as the modulus of elasticity of
the material (E), Poisson’s ratio (v), etc.
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Step3: Writing a programming language for triangular elements using the Fortran PowerStation
4.0 program according to the constitutive relationships and FEM modeling as shown in the
following link: http://bit.ly/2F17w8F.

Step4: Open the Fortran PowerStation 4.0 program. An example is shown at the following link:
http://bit.ly/2MTh22j.

Step 5: Write programming language data (Step 3) in the Fortran PowerStation 4.0 program. Examples
can be seen at the following link: http://bit.ly/2ZvZWMU.

Step 6: Input DATA.DAT of BRC beam and SRC beam in the Fortran PowerStation 4.0 program. Input
data is displayed at the following links: http://bit.ly/351FPqU and http://bit.ly/2MBgqas9. An
example of displaying input data is shown on the following link: http://bit.ly/2u2K2xR.

Step7: Analyze the program until there are no warnings and errors. If there are warnings and errors,
check and correct program data and input data.

Step8: Download stress data. The stress data are shown at the following link: http://bit.ly/2rDPeal for
the stress of BRC beam, and http://bit.ly/2Q41Ihc1 for the stress of the SRC beam. An example
of displaying stress data from the Fortran PowerStation 4.0 program is shown at the following
link: http://bit.ly/2ZybLCd.

Step9: Download displacement data. An example of displaying data displacement from the Fortran
PowerStation 4.0 program is shown on the following link: http://bit.1y/2Q7j2Wp.

Step 10: Enter stress and displacement data into the Surfer program to obtain contour image data of
stress and displacement. Stress and displacement contour image data.

2.5. Validation of Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) is a computational system for solving complex problems in
civil engineering. In this study, the validation carried out by the Artificial Neural Networks (ANN)
method is the validation of the load vs. displacements from laboratory experimental results. The data
on the loading and displacement stages of the experimental results were used as input data and target
data in this analysis. Previous researchers concluded that Artificial Neural Networks (ANN) can be
an alternative in calculating displacement in reinforced concrete beams. Several researchers have
used the ANN method for many structural engineering studies, such as predicting the compressive
strength of concrete [34], axial strength of composite columns [35], and determination of RC building
displacement [36]. Kaczmarek and Szymarnska (2016) [37] concluded that the results of calculating
displacement in reinforced concrete using ANN proved to be very effective. Abd et al. (2015) [38]
concluded that the ANN method is also very good for predicting displacement in concrete beams with
a very strong correlation level of 97.27% to the test data. Tuan Ya et al. (2019) [39] used the ANN
method to predict displacement in cantilever beams and concluded that the output was very accurate.

The ANN method is currently very popular with researchers in predicting and evaluating the
behavior of structures in the field of civil engineering. This is because the ANN method has an advantage
in the nonlinear correlation between the input variables presented. Khademi et al. (2017) [40] predicts
the compressive strength of concrete at 28 days of age by considering the experimental results, three
different models of multiple linear regression (MLR), artificial neural networks (ANN), and adaptive
neuro-fuzzy inference system (ANFIS). The results of his research concluded that the ANN and ANFIS
models can predict the 28-day concrete compressive strength more accurately and the ANN model
can perform better than the ANFIS model in terms of R?. The ANN and ANFIS models are preferred
because the nonlinear correlation between the input variables presented is better. The ANN and
ANFIS models have higher accuracy requirements than the multiple linear regression (MLR) model.
The accuracy of the prediction is very much dependent on the number of input variables. The greater
the number of input parameters, the more accurate the results of the predictor model will be.

Xuan Li et al. (2019) [41] predict the service life of corroded concrete sewer pipes using three
data-driven models, namely multiple linear regression (MLR), artificial neural networks (ANN),
and adaptive neuro-fuzzy inference system (ANFIS). The one conclusion suggests that the ANN
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and ANFIS models perform better than the MLR models for corrosion prediction, with or without
considering the interactions between environmental factors.

The ANN data is divided into three different subsets [40], namely (1) Training: at this stage,
the subset is trained and studied as occurs in the human brain, where the number of epochs is repeated
until an acceptable model accuracy is obtained; (2) Validation: at this stage, the subset shows how
well the model is trained, and estimates model properties such as misclassification, mean error for
numerical predictors; and (3) Test: at this stage, the subset verifies the performance of the training
subset built into the ANN model.

This paper uses even load input data, while the target data is the displacement of the laboratory
test results. The distribution of the ANN model data composition consists of training 70%, validation
15%, and testing 15%. ANN architecture on a rectangular beam is shown in Figure 5. The process
of implementing input data in the ANN model architecture consists of (1) Input layer, consisting of
1 neuron, namely displacement data variable of experimental results; (2) Hidden layer, consisting of
10 neurons. At this stage, the input layer will forward the data to the hidden layer or the output layer
through a set of weights. This weight is a link from each neuron to other neurons in the next layer
which will help adjust the ANN structure to the given displacement data pattern using learning. In the
learning process, the weights will be updated continuously until one of the numbers of iterations,
errors, and processing time has been reached. This is done to adjust the ANN structure to the desired
pattern based on certain problems that will be solved using ANN. Weight is known as the independent
parameter. During the training process, the weights will be modified to improve the accuracy of the
results. The third layer is (3) Output layer, consisting of 1 neuron which is the expected output target,
error, and weight. Error is the error rate of the displacement data node of the process carried out, while
weight is the weight of the displacement data node with a value ranging between —1 and 1. Then the
displacement data resulting from the training process is processed into a graphic image of the load vs.
displacement relationship.

Imput layer
{1 Neuron)

Hidden layer
(10 Neurons)

Output layer
(1 Neuron)

Figure 5. Schematic of Artificial Neural Networks (ANN) model architecture for BRC beam and
SRC beam.

3. Results

3.1. Experimental

Table 5 shows the results of theoretical calculations and experiments for BRC and SRC beams.
From the theoretical calculation, the BRC beam has an initial crack load of 6.87 kN and an SRC beam of
6.51 kN. The laboratory test results of the BRC beam experienced an initial crack at a load of 7.69 kN
and an SRC beam had an initial crack at a load of 10 kN. The average ultimate load of the BRC beam
occurs at a load of 31.31 kN or 97.27% of the theoretical collapse load of 32.19 kN. This shows that with
the correct treatment of bamboo reinforcement, the BRC beam can reach load capacity according to
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the results of the theoretical calculations. As is known, the researchers concluded that the ultimate
load of BRC beams is very low when compared to the theoretical calculations. Dewi et al. (2017) [42]
concluded that the bending capacity of bamboo reinforced concrete beams only reaches 56% of its
capacity if the tensile strength of bamboo is full. Nathan (2014) [43] concluded that the flexural capacity
of reinforced concrete beams only reaches 29% to 39% of the beam capacity steel-reinforced concrete
with the same width and reinforcement dimensions. Khare (2005) [44] concluded that the flexural
capacity of reinforced concrete beams is only 35% of steel-reinforced concrete beams at the same
strength level.

Table 5. Results of theoretical calculations and experimental for the load capacity of BRC beams and

SRC beams.
Theoret}cal Flexural Test Results
) Calculations
. Sample
Specimens N(l; First Ultimate  First Crack Failure = Displacement Poy/P
Crack Load Load, P, Load, at Failure C(’O ” )"lt
Load (kN) (kN) (kN) P, (kN) (mm) °

1 8.50 31.50 10.92 26.98
(a) BRC-1 2 8.00 29.00 11.90 27.59
3 7.00 31.00 13.02 22.58
(b) BRC-2 4 6.90 3220 7.50 33.00 12.18 22.73
() BRC-3 5 ’ ’ 8.00 33.50 14.69 23.88
6 7.50 33.00 9.32 22.73
7 7.50 29.50 7.61 25.42
(d) BRC-4 8 7.50 30.00 10.69 25.00
Average: 7.69 31.31 24.61
(e) SRC 9 6.50 24.20 10.00 24.00 6.33 41.57

SRC beams reach a collapse load of 24 kN or almost approaching the theoretical collapse load of
24.12 kN. This shows that the adhesion strength of steel-reinforcement with concrete is higher. Figures 6
and 7 show that the relationship of the load vs. displacement of the BRC beam and the SRC beam is
different. The SRC beam shows the regions of the elastic limit, elastoplastic limit, and plastic limit.
Meanwhile, the BRC beam only shows the plastic limit point or the ultimate load point. This shows that
the behavior of reinforced concrete beams is very much determined by the properties and characteristics
of the materials used.
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25 ¢
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0 2 4 6 8 -10 12 -14 -16
Displacement, A (mm)

Figure 6. The relationship of load vs. displacement of BRC beam of experimental results.
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Figure 7. The relationship of load vs. displacement of SRC beam of experimental results.

Mechanical properties and characteristics of steel and bamboo materials are the dominant factors
in the behavior model of the load and displacement relationship [6]. The difference between the stress
and strain relationship patterns of bamboo and steel is in the position of the melting point and the
fracture stress. Steel material shows a clear melting point, while bamboo reinforcement does not show
a clear melting point. However, after the fracture stress, the relationship pattern of the stress-strain
relationship tends to return to zero. This shows that bamboo has good elastic properties [7].

3.2. Validation with the ANN Method

The load vs. displacement relationship data from the experimental results is the basis used for the
train and the network. Neural networks are designed by determining their structure experimentally.
The data that trains the artificial neural network is the input, and the ability to reproduce the training
pattern is tested. Convergence analysis was carried out to determine the optimal number of neurons in
the hidden layer of ANN. Excessive neurons reduce the computational performance of ANN, whereas
a lack of neurons causes difficulties in characterizing the input-output relationship. As suggested by
Caudill and Mishra et al. (2019) [45], the upper limit of the number of neurons in the hidden layer
is twice the number of inputs plus 1. After the number of neurons in the hidden layer is reached,
the MSE, RMSE, and R? observations are stopped and no increase is assumed significant. The artificial
neural network architecture used in this paper: IHO: 1-10-1 [Input-Hidden-Output] means that this
artificial neural network consists of 1 input neuron, one hidden layer with 10 neurons, and 1 output
neuron (predictive values of the load vs. displacement relationship).

Table 6 presents the performance results of ANN architecture for ten simulations. The process
which has the lowest MSE is selected for comparison with experimental data. Figures 8-12 illustrate
the prediction of the load vs. displacement of the BRC and SRC beams obtained when using the ANN
model after training and when using the data obtained experimentally for training data, validation
data, test data, and all data. Figures 8-12 shows the correlation between the value of the BRC beam
and the SRC beam relationship obtained in the laboratory and the load vs. displacement values
obtained using ANN analysis. The convergence of the position of the point with the line y = x indicates
the identification of values with very high accuracy. The correlation value of laboratory data using
ANN shows an average value of R Square of 0.999. This indicates that the two results are consistent.
The prediction results of the ANN method show that the percentage of errors is very small, with a
maximum error of 0.26%. Overall, the comparison of experimental data with the predicted results
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of the ANN method shows an error of not more than 1%. From the data from the two analyses and
the load vs. displacement relationship pattern, it can be concluded that the stiffness of the BRC beam
has similarities.
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Figure 8. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (BRC-1).
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Figure 9. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (BRC-2).
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Figure 10. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (BRC-3).
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Figure 11. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (BRC-4).
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Figure 12. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (SRC).

Table 6. The validation results of the relationship load vs. displacement using the ANN method.

The Correlation Coefficient (R) Mean Square Error (MSE)
Specimens

Training  Validation Testing Training  Validation Testing

BRC-1 1.0000 0.9999 0.9997 0.0004 0.0011 0.0110
BRC-2 0.9999 0.9997 0.9999 0.0038 0.0276 0.0048
BRC-3 0.9998 0.9999 0.9993 0.0034 0.0075 0.0152
BRC-4 1.0000 1.0000 1.0000 0.0001 0.0009 0.0010
SRC 1.0000 1.0000 0.9997 0.0001 0.0027 0.0006

The data merger of ANN analysis results from each BRC beam specimen into a load vs.
displacement relationship. The merger is done to determine the suitability of the load vs. displacement
relationship model through the R? parameter. From the results of the regression analysis, it is found
that R? = 0.9771, or almost close to 1. This shows that the model has high suitability, as shown in
Figure 13. Figure 13 illustrates the load vs. displacement relationship for all BRC beam typologies

from ANN analysis.
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Figure 13. The relationship of load vs. displacement of BRC beam of ANN results.

3.3. Validation with the Finite Element Method

Validation of the relationship of load vs. displacement with the finite element method is done by
inputting the geometry of the cross-section, load data, modulus of elasticity (E) per layer, and Poisson’s
ratio (v). The load vs. displacement relationship diagram of the experimental results as shown in
Figures 6 and 7 is used as a guide for the stages of the analysis process using the finite element method.
And the cross-sectional stiffness input via the per-layer modulus of elasticity (E) is shown in Tables 7
and 8. The analysis execution using the finite element method uses the Fortran PowerStation 4.0
program. The process of calculating displacement and stress with the Fortran PowerStation 4.0 program
is carried out in stages according to the loading and stiffness stages per layer from the beam’s elastic
condition, initial crack, elastoplastic, and plastic conditions until the beam collapses. The displacement
data resulting from the finite element method is processed into a load vs. displacement relationship
as shown in Figure 14. The displacement contours when the ultimate load are shown in Figure 15
for BRC beams and Figure 16 for SRC beams. The stress contours at the time of the load collapse are
shown in Figure 17 for BRC beams and Figure 18 for SRC beams.
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Table 7. The modulus of elasticity for each layer of the BRC beam in the non-linear phase.

16 of 27

Modulus of Elasticity (E) of the BRC Beam

Layer Number Elas.tl'c Plastic Conditions with Gradual Loads
Condition
0-8.5 kN 9 kN 11 kN 13 kN 15 kN 17 kN 19 kN 21 kN 23 kN 25 kN 27 kN 29 kN 31 kN 33 kN
4th mesh layer  26,851.29  16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 12,083.08 11,277.54 11,277.54 8592.41
3th mesh layer  26,851.29  16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 16,110.77 1208.31 10,740.52 9397.95 9397.95 7518.36
2nd mesh layer  23,140.89  13,884.53 11,570.44 11,57044 1157044 1157044 10,413.40 10,413.40 10,413.40 10,413.40 6942.27 6942.27 6942.27 5553.81
1st mesh layer ~ 26,851.29  13,425.65 11,814.57 10,203.49 832390 6712.82 5101.75 5101.75 5101.75 3759.18 3222.16 2685.13 1611.08 1329.14
Table 8. The modulus of elasticity for each layer of the SRC beam in the non-linear phase.
Modulus of Elasticity (E) of the SRC Beam
Layer Number Elas'tl'c Plastic Conditions with Gradual Loads
Condition
0-9 kN 10 kN 11 kN 12 kN 13 kN 15 kN 17 kN 19 KN 21 KN 23 kN 24 kN

4th mesh layer 26,851.29  26,851.29 20,138.47  20,138.47 20,138.47  20,138.47  20,138.47 18,79590 18,79590  13,425.65 11,411.80

3th mesh layer 26,851.29  26,851.29  20,138.47 20,138.47 1879590  18,79590  18,79590 17,453.34 17,453.34 13,425.65 11,411.80

2nd mesh layer 43,209.32  43,209.32  30,586.93  30,586.93 28547.80 28,547.80 26,508.67  26,508.67 24,469.54 20,391,29  17,332.60

1st mesh layer 26,851.29  26,851.29  20,138.47  20,138.47 18,795.90 18,79590 17,453.34  16,110.77  14,76821  13,425.65 12,083.08
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Figure 14. The relationship of load vs. displacement of BRC beam of finite element method (FEM) results.

X
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Figure 16. The displacement contour of Y-direction of SRC beam.
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Figure 17. The stress contour of X-direction of BRC beam.
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Figure 18. The stress contour of X-direction of SRC beam.

4. Discussion

Merging is carried out on the load vs. displacement relationship diagram from the experimental
results, ANN analysis, and finite element method (FEM) analysis. Figure 19 shows the combined
load vs. displacement diagram of the ANN analysis results with the experimental results. Figure 19
shows that the load vs. displacement relationship diagram the two analyses results are very coincided
or show high suitability. However, at a load of approximately 90% of the collapse load, the load vs.
displacement relationship diagram shows different behavior. Figure 20 shows the combined load
vs. displacement diagram of the experimental results, ANN analysis, and the results of the finite
element method analysis. Figure 19 shows that the artificial neural networks (ANN) model has a
higher R? value when compared to the R? value of the multiple linear regression model (MLR). ANN
analysis has better predictive accuracy. This is the same as the conclusion of 2 researchers, namely
Khademi et al. (2017) [40], who concluded that the ANN model has higher accuracy than the multiple
linear regression (MLR) model, and Xuan Li et al. (2019) [41], who concluded that the ANN model
performs better than the MLR models with or without considering the interactions between factors.
The accuracy of the prediction is very much dependent on the number of input variables. The greater
the number of input parameters, the more accurate the results of the predicted model.
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Figure 19. The combined of the load vs. displacement relationship of BRC beam of the experimental
results and ANN analysis.
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Figure 20. The combined of the load vs. displacement relationship of BRC beam and SRC beam of the
experimental results, ANN analysis, and FEM.

The diagram of the relationship between load and displacement of the BRC beam from FEM
analysis and experimental results shows the difference in elastic conditions or until the initial crack
occurs. The experimental results showed negative differences with the results of the FEM analysis.
This shows the influence of the nature and characteristics of bamboo. The parts of bamboo stems have
a non-uniform or uncertain modulus of elasticity. Tensile strength and modulus of elasticity of bamboo
tested in the laboratory are sometimes different from bamboo which is used as beam reinforcement.
As is known, bamboo trees from base to tip have different tensile strength and fiber density. Meanwhile,
the relationship diagram of load vs. displacement of the SRC beam experiment results is positively
different from the results of the FEM analysis when the elastic condition or until the initial crack occurs.
Positive differences can be ignored, in the sense that the quality of the steel used is better than the
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quality of steel tested in the laboratory. However, in this study, the analysis of stiffness reduction in
BRC and SRC beams was focused after the beam experienced an initial crack or non-linear phase.

Figure 20 shows that inelastic conditions there is a difference in stiffness between the two types
of beams. The stiffness of bamboo reinforced concrete beams (BRC) is lower than the stiffness of
steel-reinforced concrete beams (SRC). This difference occurs not due to reduced cross-section inertia
or I of cross-sectional reduction, but due to the nature of the material used. This is because the BRC
beam uses bamboo reinforcing material, which has high elastic and resilience properties. BRC beams
with bamboo reinforcement will be able to accept high impact loads without causing over stress at
the elastic limit, even though displacement has occurred. This indicates that the energy absorbed
during loading is stored and released if the material is not loaded. Meanwhile, the SRC beam uses steel
material that has high stiffness and toughness, so that the SRC beam in the service load range or elastic
conditions does not experience excessive displacement or deformation. Beams that use materials with
high stiffness and toughness will be able to withstand high impact loads or shock loads. If the SRC
beam gets an impact load, then some of the energy is absorbed and some of the energy is transferred.

In the non-linear phase or after initial cracking, the beam stiffness changes from the full-sectional
flexural stiffness, E.I,, to the effective bending stiffness, Eclf. In the non-linear phase, the stiffness
of the beam section continues to decrease with increasing loads, moments, and cracks. The area of
the beam section continues to decrease with increasing cracks and automatically causes the beam
section stiffness (El;) to decrease. As shown in Table 6 and Figure 21, the stiffness of the BRC beam
decreases after the initial cracking occurs as the increasing loading stage is applied. The increase in
load causes the flexural moment to increase, the displacement increases, and the crack propagation
continues to spread towards the compressed block of the beam cross-section. The crack propagation
from 1st mesh layer to the 2nd mesh layer onwards runs linearly with reduced cross-sectional stiffness
from the lower fiber of the cross-section tensile block to the upper fiber of the compressive block of the
beam cross-section. The increase in crack propagation towards the compressive block of cross-section
causes the neutral line to change. Chunyu Fu et al. (2018) [13] concluded that the presence of cracks
causes a nonlinear stress distribution along the beam cross-section, which changes the neutral axis of
the cross-section and further affects the stiffness of the beam. Figure 21 shows that the stiffness of the
BRC beam cross-section decreases from the initial crack until the beam collapses. The stiffness of BRC
beams is reduced by 50% after initial cracking to 95% at collapse. The stiffness reduction goes step by
step according to the moment (M,) applied to the beam. Sang-Whan Han et al. (2009) [4] revealed that
the stiffness reduction factor was significantly affected by the amount of moment or the applied load,
while the stiffness reduction factor did not differ from the amount of reinforcement. The decrease in
the moment of inertia of the full cross-sectional Ig of the BRC beam ranged from 0.51,-0.05I, for the
elastoplastic and plastic regions. Meanwhile, ACI-318M-14 [5] recommends the stiffness of the beam
cross-section for elastic analysis in the non-linear phase of 0.5[;-0.251;. The difference in the value
of the reduction in the stiffness of the cross-section at collapse correlates with the differences in the
properties and characteristics of the material used as beam reinforcement. Bamboo reinforced concrete
beams (BRC) exhibit high displacement behavior, but once the collapse load is reached and gradually
released, displacement tends to return to zero. It is linear with its elastic properties and the stress vs.
strain relationship behavior of bamboo.

Table 7 and Figure 22 show a decrease in stiffness or a decrease in the moment of inertia of the SRC
beam cross-section. Stiffness decreases after initial cracking as the applied load increases. Figure 22
shows that the cross-sectional stiffness of the SRC beam decreases from the initial crack until the
beam collapses. The stiffness of the SRC beam was reduced by 25% after initial cracking to 60% at
collapse. The decrease in the moment of inertia full cross-section (Ig) for SRC beams ranged from
0.751,—0.401, for the elastoplastic and plastic regions. Meanwhile, ACI-318M-14 [5] recommends the
cross-sectional stiffness of reinforced concrete beams for elastic analysis in the non-linear phase of
0.5I;—0.25I;. The difference in the value of the reduction in the cross-sectional stiffness of the SRC
beam with the ACI-318M-14 [5] requirements is due to the beam cross-section reinforcement method,
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namely the SRC beam in this study using a single reinforcement method. SRC beam with single
reinforcement shows that when the steel reinforcement undergoes second melting and the moment
of inertia of the cross-section is still around 40%, the steel reinforcement is not able to withstand
the tensile stress that occurs so that the neutral line of the cross-section continues to shift upwards
towards the upper fiber of the compression block of the cross-section. Meanwhile, BRC beams with
bamboo reinforcement have good elastic properties, where after the ultimate load is reached, the large
displacement shrinks back to near-zero or the beam returns flat [7], as shown in the video at the
following link: https://goo.gl/6AVWmP. Although the stiffness or inertia of the BRC beam cross-section
is still around 5%, bamboo reinforcement is still able to withstand the tensile stress that occurs, as stated
by Ghavami (2005) [24] that bamboo has high tensile strength. If we control with the crack pattern,
the crack lines on the BRC beam majority stop below the cross-section neutral line, while the crack lines
on the SRC beam tend to continue to propagate upwards towards the upper fibers of the compressive
block of the beam cross-section, as shown in Figures 23 and 24. And if we look at Figures 17 and 18,
the tensile stress contour of the BRC beam has a wider zone and spreads to the side when compared to
the SRC beam.

Figures 25 and 26 show the relationship between the stiffness reduction factor (¢ ) and the M,/M,,
of the BRC beam and the SRC beam. The stiffness reduction factor (¢g) is the ratio of the moment of
inertia of the effective section (I;) divided by the moment of inertia of the cross-section (I;). The stiffness
reduction factor (¢g) is significantly influenced by the applied moment level. The equation of the
beam stiffness reduction factor is related to the ratio between the applied moment and an initial
crack moment or M,;/M.r. The equation for the stiffness reduction factor is shown in Equation (5) or
Equation (6) for a BRC beam. The stiffness reduction factor equation for the SRC beam is shown in
Equation (7) or Equation (8). Figure 27 shows a comparison of the relationship between the stiffness
reduction factor and the M,/M,, of the BRC beam and SRC beam. The diagram of the relationship
between the stiffness reduction factor and M,/M. shows that the SRC beam has a smaller stiffness
reduction factor than the BRC beam in the non-linear phase. However, the SRC beam shows a collapse
at the moment of inertia of the effective cross-section (I.), which is relatively still large when compared
to BRC beams. BRC beams collapse at the effective cross-section inertia of about 5%, and SRC beams
collapse at the effective section inertia of about 40%. The alternative of moments of inertia from various
sources is shown in Table 9.

dx = 0.646 — 0.1023( M, ) 5)
M

L M,

e _0.646 0.1023( ) 6

I, M, ©)

dx = 0.697 — 0.1472( M ) )
M.,

L M, )

~£ —0.697 —0.1472

I =0697-0 ( T ®)

Table 9. The alternative value of I for elastic analysis from various sources.

Source and Information Alternative Value of I for Elastic Analysis
ACI-318M-14 [5] 0.251,-0.51¢
FEMA 356-2000 [46] 0.5 EI,—0.8EI,
New Zealand Code [47] 0.351¢
Paulay and Priestley, 1992 [48] 0.3013-0.50I¢
In this research (singly reinforced beam)
-BRC Beam 0.05I;—0.51¢

-SRC Beam 0.41g-0.75l
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Figure 21. Decreased stiffness of BRC beam cross-section in the span middle.

Loading stage (kN)

OkN 5kN 10kN  11kN  12kN  13kN  15kN  17kN  19kN  21kN  23kN  24kN

- 025 025 0.25 0.25 -0.25 030 030
S

o 025 -0.25 -0.30 -0.30 -0.30 050 0.58
- 0.35 -0.35

£ First crack 025 -025

= 0.30 -0.30

5 0.35

= -0.25 -0.35 -0.50

&) -0.25 ; -0.40

& 0.30 -0.30 -0.58
wn -0.35

£ o -0.40

2 & -0.45 -0.50

g=

E E -0.58
> o

=

s = 0.50

2 s . .

g g Linear plastic

5 region -0.60
3 &

° 1 0 ' ’ . . . .

&, Vg Elastoplastic and plastic region (Experiment and FEM - SRC Beam)

<

< 0.751, - 0.401,

8

5 The cross-section stiffness for elastic analysis in the plastic area

= (ACI 318-14 - Beams)

=

= 0.50/, - 0.251,

Figure 22. Decreased stiffness of SRC beam cross-section in the span middle.

22 of 27

4" mesh layer

3thmesh layer

2t mesh layer

1™ mesh layer

—— 4th mesh layer

—=— 3th mesh layer

2nd mesh layer

—o— 1st mesh layer



Forests 2020, 11, 1313 23 of 27

There is compatibility between a tensile
stress zone and a crack zone of BRC beam

2
>

=

[ *

There is compatibility between a tensile
stress zone and a crack zone of SRC beam

Figure 24. The crack pattern and tensile stress zone of SRC beam.
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5. Conclusions

The relationship pattern of load vs. displacement reflects the stiffness pattern of structural
elements. The properties and characteristics of the material in the reinforcing concrete elements have a
dominant influence on the relationship pattern of the load vs. displacement of reinforced concrete
elements. Bamboo reinforced concrete beams (BRC) have a different load vs. displacement relationship
pattern when compared to steel reinforced concrete beams (SRC). BRC beams have elastic properties
and high resilience properties that can accept high impact loads without causing over stress at the
elastic limit, even though displacement has occurred. While SRC beams have high stiffness and
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toughness so that SRC beams are not subject to excessive displacement or deformation at service load
ranges or elastic conditions.

Results of the validation of the relationship pattern of the load vs. displacement of the BRC beams
shows that the ANN model has a higher R? value when compared to the R? value of the MLR model.
ANN analysis has a higher prediction accuracy. The accuracy of the prediction depends very much on
the number of input variables. The greater the number of input parameters, the more accurate the
prediction model results.

The cross-sectional stiffness of BRC beams is reduced by 50% after initial cracking and reduced by
95% at collapse. The cross-sectional stiffness of the SRC beam was reduced by 25% after initial cracking
and reduced by 60% at collapse. The reduction in stiffness is significantly affected by the amount of
applied moment (M,) or the load applied that caused cracks and a reduction in the moment of inertia
of the cross-section.

The initial decrease in cross-sectional stiffness of BRC beams occurs at a load of about 24% of
the ultimate load and BRC beams occur at loads of about 40% ultimate load. BRC beam collapse
occurs when the moment of inertia of the effective cross-section (I.) is 5%, while the SRC beam collapse
occurs when the moment of inertia of the effective cross-section (I,) is 40%. The reduction in stiffness
in the cross-section of the beam in the non-linear phase ranged from 0.5;—0.05I; for BRC beams,
and 0.751,-0.401, for SRC beams. ACI-318M-14 standard recommends the cross-sectional stiffness of
reinforced concrete beams for elastic analysis in the non-linear phase of 0.51;-0.25I.

The SRC beams have a smaller stiffness reduction factor (¢x) than BRC beams in the non-linear
phase. However, the SRC beam shows a collapse at the moment of inertia of the effective cross-section
(I¢), which is relatively large when compared to BRC beams.
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Abstract: This paper discusses the reduction of the stiffness of bamboo reinforced concrete (BRC

beams to support the use of bamboo as an environmentally friendly building material. Calculation
of cross-section stiffness in numerical analysis is very important, especially in the non-linear phase.
After the initial crack occurs, the stiffness of the cross-section will decrease with increasing load and
crack propagation. The calculation of the stiffness in the cross-section of the concrete beam in the
non-linear phase is usually approximated by giving a reduction in stiffness. ACI 318-14 provides an
alternative, reducing the stiffness of the plastic post-linear beam section through the moment of
inertia (I) of the beam section for elastic analysis between 0-5014'b»2513- This study aims to predict

the value of the reduction in the stiffness of the BRC beam section in the non-linear phase through
the load-displacement relationship of experimental results validated by the Finite Element Method
(FEM) and the Artificial Neural Networks (ANN) method. The experiment used 8 BRC beams and

one steel-reinforced concrete (SRC) beam of singly reinforced with a size of 75 mm ‘x 150 mm x thO )

mm. The beams were tested using a four-point loading method. The analysis results showed that
the value of the stiffness reduction in the beam cross-sectional in the non-linear phase ranged from
0.5I;—0.05I; for BRC beams, and 0.75I;—0.40I; for SRC beams.

Keywords: stiffness reduction; bamboo reinforced concrete (BRC); finite element method (FEM);
artificial neural networks (ANN)

1. Introduction

The impact of increasing industrial development is that it can cause pollution of air, water, soil,
and noise. The use of industrial building materials such as ceramics, steel, concrete, and other
materials has led to an increase in environmental pollution. The procurement of wood forests or
bamboo forests must be done as a counterweight to environmental pollution. Pandey et al. (2017) [1]
and Mostafa et al. (2020) [2] revealed that an average tree absorbs one ton of ‘COz‘ and produces 0.7
tons of O: for every cubic meter of growth. The use of environmentally friendly building materials
such as wood and bamboo must be done. Bamboo is a forest product that provides high economic
and ecological value to the community. Bamboo also has enormous potential with promising
prospects [3]. Bamboo is one of the commodities produced by Community Forests. However,
research on the behavior of bamboo as a building material is mandatory, such as research on the
stiffness of bamboo reinforced concrete (BRC) beams.

The stiffness reduction factor is a multiplier to reduce the moment of inertia in gross cross-
sectional, and the gross cross-sectional area remains constant. These factors are conservatively
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enforced by various concrete standards to account for the loss of stiffness in the concrete cross-section
due to the cracking of the concrete. The stiffness of the beam cross-section in the elastic phase or linear
phase indicates the full section flexural stiffness, Ecl;, whereas in the non-linear phase or after the
initial crack, the gross cross-section bending stiffness is reduced to the effective flexural stiffness, Ecly.
The stiffness reduction factor is significantly influenced by the amount of moment or the applied
load, while the stiffness reduction factor does not differ from the amount of reinforcement [4]. ACI
318M-14 [5] shows that the gross section flexural stiffness, Eclg, is reduced to obtain the effective
flexural stiffness, Ecl, which causes cracking and other softening effects. As the moment in the
concrete section increases, the flexural stiffness will be reduced due to the cracks that continue to
propagate and spread. ACI 318M-14 [5] provides stiffness reduction limits for elastic analysis with a
moment of inertia limits between 0.251;—0.5I; for concrete beams. The equation for the moment of
inertia effective (I) is determined in ACI 318-05 [5] ﬁection 9.5.2.3L as shown in Equation (1).

C
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) .
where I; = moment of inertia of the gross concrete section and I = moment of inertia of the crack
section including the reinforcement. The moment of inertial effective (I.) as shown in Equation (1)
will decrease as the moment that occurs, M.. Calculation of the moment of inertia of the crack cross-
section, I at Equation (1) must pay attention to the number of reinforcement installed. However, the
amount of reinforcement is not determined at the initial design stage.

The process of stiffness reduction in the beam section starts from the “no crack” and “cracked”
conditions in the section. In the service load condition or the elastic condition, the stiffness of the
beam section is in full condition, even though the moment due to the load continues to increase. In
the elastic condition, the moment that occurs (M) is still below the moment of cracking (M.r), or the
tensile stress of the concrete is still below the modulus of rupture of the concrete beam cross-section,
fr. In the elastic conditions, the difference in stiffness between two different types of beams usually
occurs not due to reduced inertia of the cross-section, but due to the properties of the materials used.
For example, the stiffness of bamboo reinforced concrete beams is different from the stiffness of steel-
reinforced concrete (SRC) beams. In the elastic conditions, the stiffness of bambeoreinforced-concrete
beams{BRC) beams is lower than the stiffness of steel-reinforeed-conerete beams{SRC) beams [6-8].;
Tthis is because BRC beams use bamboo reinforcing materials which have elastic properties and high
resilience properties. BRC beams with bamboo reinforcement will be able to accept high impact loads
without causing stress over the elastic limit, even though displacement has occurred. This indicates
that the energy absorbed during loading is stored and released if the material is not loaded.

Meanwhile, the SRC beam uses steel material that has high stiffness and toughness, so that the
SRC beam in the service load range or elastic condition;+the-beam does not experience displacement
or excessive deformation-excessive. Beams that use materials with high stiffness and toughness will
be able to withstand high impact loads or shock loads. If the SRC beam gets an impact load, then
some of the energy is absorbed and some of the energy is transferred.

Research on modeling and stiffness reduction has been carried out by many researchers. Kai
Zhang et al. (2020) [9] investigated the effect of electrochemical rehabilitation (ER) techniques on the
fatigue stiffness of RC beams. The results of his research indicated that electrochemical rehabilitation
(ER) exacerbated bond breakage, thereby reducing the flexural stiffness of RC beams. Salam Al-Sabah
et al. [10] discuss the use of negative stiffness in the failure analysis of concrete beams. In his research,
Salman Al-Sabah et al. concluded that the effective and simple one-dimensional stress-strain behavior
of concrete was used to study concrete blocks with proportional loading, t—Fhe only source of non-
linearity to consider cracks in concrete. Hong-Song Hu et al. (2016) [11] investigated the effectiveness
of square ‘CFST‘ rod stiffness, and the results proposed an equation for the effective stiffness of square

confirm if it refers to this article.

CFST rods. Muhtar et al. [7] tested the flexural of BRC beams and SRC beams, the results showed that
the stiffness decreased after the initial cracking. The average stiffness of the BRC beam decreased
from 26,324.76 MPa before cracking to 6581.20 MPa after collapse [7], while the average value of SRC
beam stiffness decreased from 30,334.11 MPa before cracking to 16873.35 MPa after the collapse.

(c
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K.A. Patela et al. (2014) [12], in their paper, provide an explicit expression for the effective
moment of inertia by considering cracks for reinforced concrete beams (RC) with uniformly
distributed loads. The proposed explicit expressions can be used to predict short-run displacement
in-service load. The sensitivity analysis shows a substantial dependence of the effective moment of
inertia on the selected input parameter. Displacement is an important parameter for examining the
serviceability criteria of structures. The short-term displacement is generally calculated using the
effective moment of inertia across the span at the service load [12]. Chunyu Fu (2018) [13] presents a
method of estimating the stiffness of cracked beams based on the stress distribution. In his conclusion,
he said that the presence of cracks causes a nonlinear stress distribution along the beam section, which
changes the neutral axis of the cross-section and further affects the stiffness of the beam. J.R. Pique
(2008) [14] concluded that when the design is controlled by the minimum reinforcement, especially
in the beam, special attention should be paid to the calculation of the real period and maximum
distortion. The effective stiffness of the beam with the minimum steel ratio is much lower than that
obtained by the proposed reduction factor. As a result, the actual period and actual maximum
distortion can be greater. Akmaluddin et al. (2012) [15] concluded that the moment of crack and the
value of the moment of inertia of the crack was significantly affected by the presence of bamboo
reinforcement in the beam. The experimental results show that the crack moment varies from 0.3 to
0.7 from the ultimate moment. The experimental and theoretical crack moment ratio varies from 0.90
to 1.42. ilker Kalkan (2013)_and [16] concluded that the effective moment of inertia and load-
displacement curve analysis is highly dependent on the crack moment used in the expression analysis
of the effective moment of inertia. Therefore, the experimental cracking moment of the beam should
be used in the calculation of the effective moment of inertia for a more accurate comparison of the
different analytical methods. Chunyu Fu et al. (2020) [17] concluded that cracking of concrete causes
a gradual change in the distribution of strain along with the cross-sectional height of reinforced
concrete beams, which in turn affects the instantaneous stiffness. The instantaneous stiffness proved
to be highly dependent on the number and depth of cracks. This dependence can be accurately
reflected by the method proposed by simulating a gradual change in the concrete strain distribution.
Xiuling Feng et al. (2013) [18] examines the reduction factor of flexural stiffness in reinforced concrete
columns with an equiaxial cross-section and suggests that the reduction factor is proposed by
considering the nonlinear characteristics of the material and its geometric nonlinearity.

The difference in the nonlinear characteristics of the material used in the BRC beam and the SRC
beam greatly determines the flexural behavior of the beam. Bamboo reinforced concrete beams have
low stiffness and tend to be large displacement. The solution to increasing the stiffness of BRC beams
is to use shear reinforcement and the principle of confined concrete [7,19]. In the linear elastic
condition, the BRC beam has shown a large displacement, but when the ultimate load is reached and
the loading is released gradually, the displacement tends to return to zero. In this study, the reduction
of stiffness in the non-linear phase was analyzed through the load vs. displacements that were
validated using the finite element method (FEM) and the Artificial Neural Networks (ANN) method.
It is suspected that the reduction of the cross-sectional stiffness of the BRC beam is different from the
reduction in the stiffness of the SRC beam section. The parameter of the moment of inertia of the
cross-section becomes a benchmark in determining the reduction of stiffness according to ACI-318M-
14 [5].

2. Materials and Methods

2.1. Treatment of Materials

In this study, the treatment of bamboo material as concrete reinforcement is an important thing
to do. The bamboo used is the bamboo “petung” (Dendrocalamus asper) which is between three and
five years old [20-22]. The part of bamboo that is used as reinforcing of concrete is 6-7 m long from
the base of the bamboo stem [23]. Bamboo is cut according to the size of the bamboo reinforcement
to be used, which is 15 x 15 mma2. Then, bamboo is soaked for +20-30 days [21]. After soaking, bamboo
is dried in free air until it has an absorption level of + 12%.
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Application of adhesive or waterproof coating [24,25] is done after the bamboo reinforcement is
cleaned and trimmed according to the planned size. The application of a waterproof layer is carried
out to prevent the hydrolysis process between bamboo and concrete. Sand sprinkling on bamboo
reinforcement is done when the adhesive is half dry to make it stronger [21,26]. The application of
sand aims to increase the adhesion strength of bamboo reinforcement to concrete.

An ilnstallation of a hose-clamp at both ends of the bamboo reinforcement is done to match the
concept of hooks or bends in steel reinforcement. An ilnstallation of the hose-clamp only on tensile
reinforcement is done to increase bond-stress between bamboo reinforcement and concrete [27,28].
The tensile force on the bamboo reinforcement will be distributed to the concrete through the hose-
clamp, which functions as a shear connector. Bamboo treatment is shown in Figure 1.

o Sand
Sikadur®-752

e 9 Bamboo reinforcement
A EERE- S with Sikadur®-752
Konsep jurglal ANN-2.docx - Microsoft
4 Bamboo reinforcement
ar M=zt wer e 309 AaBEC w1lh.51kadur®-752
coating and sand
A-=EE=2= B 1"
2 4 Bamt reinforcement
J with hose-clamp
psuffveww mdpi.comfjournal/cryStals/special_issues/Conere

Figure 1. The materials and treatments of bamboo reinforcement.

2.2. Materials

The concrete mixture used in this study is a normal concrete mixture consisting of Portland
Pozzolana Cement (PPC), sand, coarse aggregate, and water with a proportion of 1:1.8:2.82:0.52. Sand
and gravel come from the Jember area of Indonesia. The cylindrical specimen measures 150 mm in
diameter and 300 mm in height. The cylindrical specimens were press-tested using a Universal
Testing Machine (UTM) with a capacity of 2000 kN after the concrete was 28 days old. The procedure
for the cylinder specimen compressive test follows ASTM C 39 [29]. The average compressive
strength of cylindrical concrete is 31.31 MPa with an average weight of 125.21 N. The properties and
characteristics of the concrete are shown in Table 1.

Table 1. Material properties of reinforcing and concrete.

CFormatted: Font: Not Bold
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Bar
Type Diameter, d Mod.u‘lus of Poisson’s Tensile Compressive
and (mm) Elasticity (E), Ratio (v) Strength, f; Strength,
Concret (MPa) (MPa) (MPa)
e
Bamboo  [fl5x 15 17,235.74 0.20 126.68 - [c
Steel ¢8 207,735.92 0.25 392.28 -
Cor:rEt - 26,324.79 0.30 - 3131

The tensile test of bamboo reinforcement produces the average tensile stress of 126.68 N/mm?
with an average strain of 0.0074. The modulus of elasticity of bamboo reinforcement was calculated
using the formula E = /¢ and obtained 17,235.74 MPa. The modulus of elasticity of steel is obtained
by 207,735.92 MPa. The properties and characteristics of bamboo and steel reinforcement are shown
in Table 1.
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The adhesive layer or waterproof coating used was Sikadur®-752 produced by PT. SIKA
Indonesia [30]. The specifications for the adhesive sikadur®-752 are shown in Table 2. Installation of

hose-clamp on bamboo reinforcement is done when the waterproof layer is half dry [21]. The
diameter of the hose-clamp used is %" made in Taiwan.

Table 2. The specification of Sikadur®-752 [30].
Components Properties
Colour Yellowish
Density Approx. 1.08 kg/L
Mix comparison
. 2:1
(weight/volume)
Pot life at +30 °C 35 min
Compressive 62 MPa at 7 days (ASTM D-695)
strength 64 MPa at 28 days
Tensile strength 40 MPa at 28 days (ASTM D-790)
Tensile Adhesion 2 MPa (Concrete failure, over mechanically prepared concrete surface)
Strength
Coefficient of o o o
Thermal Expansion ~20°Cto+40°C 89 x 10 per °C ¢ ted [M11]: We changed to it, please confirm if it is
t.
Modu.lu.s of 1060 MPa correc
elasticity
2.3 Experimental Procedure

The test object consisted of 9 beams with a size of 75 mm x 150 mm x 1100 mm, consisting of 8
bamboo reinforced concrete beams (BRC); and one steel-reinforced concrete beam (SRC). Bamboo
reinforcement is installed as tensile reinforcement with a reinforcement area of 450 mma?. The steel

reinforcement used has a diameter of 8 mm with an area of As =100.48 mm? The beam geometry and
reinforcement detail of the BRC and SRC beams are shown in Figure 2.
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Figure 2. Reinforcement details and beam test settings.

The beam flexural test method was carried out using the four-point method [31]. The test
arrangement and load position are shown in Figure 2. Strain gauges are installed on the bamboo
reinforcement at a distance of %4L from the support of the beam. Beam displacement measures useing
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Linear Variable Displacement Transducers (LVDT)

5} with a (F ormatted: Font: Not Italic

distance of ¥4L from the beam support.

The loading stages from zero to the collapse of the beam are used as a hydraulic jack and a load
cell connected to a load indicator tool. The load reading on the load indicator is used as a hydraulic
jack pump controller, displacement reading, and strain reading according to the planned loading
stage. However, when the test object reaches its ultimate load, the displacement reading controls the
strain and load reading, while the pumping of the hydraulic jack continues slowly according to the
command of the displacement reader. The failure pattern was observed and identified by the cracks
that occurred, from the time of the initial crack until the beam collapsed.

2.4. Validation of Numerical Methods

Walidation of experimental data was found by using the Finite Element Method (FEM) and

: Please check that intended meaning is

Artificial Neural Networks (ANN). rThe relationship between load vs. displacement experiment C ted [CH12]
results was validated by using the finite element method. The procedure used is inputting material retained.

data and loading stages to determine the behavior of the load vs. displacement of BRC beams and

SRC beams. The data input for the loading stages is carried out following the loading stages from

laboratory experimental data. The numerical method used is the finite element method, using the

Fortran PowerStation 4.0 program [32]. TThe theoretical analysis is used to calculate the load causing

the initial crack using elastic theory (linear analysis) with cross-section transformation. tFor linear C ted [CH13]
analysis, the input material data is the modulus of elasticity (E) and Poisson’s ratio (v). The calculation retained.

of the modulus of elasticity of the composites (Ecmp) is shown in Tables 3 and 4. The non-linear phase

: Please check that intended meaning is

is approximated by decreasing the concrete strength from 0.25 to 0.5 for the calculation of the effective
stiffness in the plastic plane [5]. In the analysis of the finite element constitutive relationship, the
problem-solving method uses the plane-stress theory. Triangular elements are used to model plane-
stress elements with a bidirectional primary displacement at each point so that the element has six
degrees of freedom. The discretization of the beam plane is carried out using the triangular elements
shown in Figure 3 for BRC beams and Figure 4 for SRC beams.
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Figure 3. Discretization of the triangular element on the bamboo reinforced concrete (BRC) beam.
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Figure 4. Discretization of the triangular element on the steel-reinforced concrete (SRC) beam.
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Table 3. Elasticity Modulus of Composite of BRC beam.

Compressive . . .. ..
Layer P Dimensions of  Modulus of Elasticity of the  Elasticity Modulus
Number Strength of er Layer Material (E) of Composite (Ecomp)
Concrete, fc p Y 3 P
Concrete, Ec Bamboo, E»
Mpa b(mm) h(mm) (MPa) (MPa) MPa
dth mesh 3131 75 50 26,851.29 0 26,851.29
layer
3rd mesh 3131 75 60 26,851.29 0 26,851.29
layer
2nd mesh 3131 75 15 26,851.29 172357 23,140.89
layer
Ist mesh 3131 75 25 26,851.29 0 26,851.29
layer
Table 4. Elasticity Modulus of Composite of SRC beam
Compressive ~ Dimensions of ~ Modulus of Elasticity of the  Elasticity Modulus
Layer . .
Strength of per Layer Material (E) of Composite (Ecomp)
Number
Concrete,
Concrete, Ec Steel, Es
Mpa b(mm)  h (mm) (MPa) (MPa) MPa
4th mesh layer 31.31 5 50 26,851.29 0 26,851.29
Srd mesh 3131 75 67 26,851.29 0 26,851.29
layer
2nd mesh 3131 75 8 26,851.29 207,735.92 4320932
layer
1st mesh layer 31.31 75 25 26,851.29 0 26,851.29

The modulus of elasticity (E); for each layer; is calculated according to the condition of the
material. Layers of concrete and bamboo reinforcement are calculated using the following Equation.
(2) [33].

E,=EV,+EJ, @

where E. = the equivalent elasticity modulus of BRC beam, E; = elastic modulus of bamboo
reinforcement, Ec = modulus of elasticity of concrete, Vs = relative volume of bamboo reinforcement in
calculated layers, and V. =relative volume of concrete in calculated layers. The stress-strain relationship
for plane-stress problems has the shape of an equation such as Equation (3).

o, E 1 v 0 |le

o, p=——|v 1 0 fe 3)
T A+ 1-v||’

Ty 00 3 Ve

where E is the modulus of elasticity and v is the Poisson’s ratio. And the principal stresses in two
dimensions are calculated by Equation (4).

o.+0,
O, = *

4
3 )

The simulation and steps for preparing a FEM analysis with the Fortran PowerStation 4.0 program
[32] are summarized as follows:

Step 1: Discretization of BRC and SRC beam planes with the discretization of triangular elements, the
numbering of triangular elements, and the numbering of nodal points as shown in Figures 3(d) and
Figure 4.
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Step 2: Calculation and collection of geometry and material data, such as the modulus of elasticity of
the material (E), Poisson’s ratio (v), etc.

Step 3: Writing a programming language for triangular elements using the Fortran PowerStation 4.0
program according to the constitutive relationships and FEM modeling as shown in the following link:
http://bit.ly/2F17w8F.

Step 4: Open the Fortran PowerStation 4.0 program. An example is shown at the following link:
http://bit.ly/2MTh22j.

Step 5: Write programming language data (Step 3) in the Fortran PowerStation 4.0 program. Examples
can be seen at the following link: http://bit.ly/2ZvZWMU.

Step 6: Input DATA.DAT of BRC beam and SRC beam in the Fortran PowerStation 4.0 program. Input
data is displayed at the following links: http://bit.ly/351FPqU and http://bit.ly/2MBqas9. An example of
displaying input data is shown on the following link: http://bit.ly/2u2K2xR.

Step 7: Analyze the program until there are no warnings and errors. If there are warnings and errors,
check and correct program data and input data.

Step 8: Download stress data. The stress data are shown at the following link: http://bit.ly/2rDPeal for
the stress of BRC beam, and http://bit.ly/2Q4Ihcl- for the stress of the SRC beam. An example of
displaying stress data from the Fortran PowerStation 4.0 program is shown at the following link:
http://bit.ly/2ZybL.Cd.

Step 9: Download displacement data. An example of displaying data displacement from the Fortran
PowerStation 4.0 program is shown on the following link: http://bit.ly/2Q7j2Wp.

Step 10: Enter stress and displacement data into the Surfer program to obtain contour image data of
stress and displacement. Stress and displacement contour image data are shown in tFigures 15—18L

C
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2.4. Validation of Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) is a computational system for solving complex problems in
civil engineering. In this study, the validation carried out by the Artificial Neural Networks (ANN)
method is the validation of the load vs. displacements from laboratory experimental results. The data
on the loading and displacement stages of the experimental results were used as input data and target
data in this analysis. Previous researchers concluded that Artificial Neural Networks (ANN) can be
an alternative in calculating displacement in reinforced concrete beams. Several researchers have
used the ANN method for many structural engineering studies, such as predicting the compressive
strength of concrete [34], axial strength of composite columns [35], and determination of RC building
displacement [36]. Kaczmarek and Szymariska (2016) [37] concluded that the results of calculating
displacement in reinforced concrete using ANN proved to be very effective. Abd et al. (2015) [38]
concluded that the ANN method is also very good for predicting displacement in concrete beams
with a very strong correlation level of 97.27% to the test data. Tuan Ya et al. (2019) [39] used the ANN
method to predict displacement in cantilever beams and concluded that the output was very accurate.

The ANN method is currently very popular with researchers in predicting and evaluating the
behavior of structures in the field of civil engineering.; Tthis is because the ANN method has an
advantage in the nonlinear correlation between the input variables presented-is-better. Khademi et al.
(2017) [40] predicts the compressive strength of concrete at 28 days of age by considering the
experimental results, three different models of multiple linear regression (MLR), artificial neural
networks (ANN), and adaptive neuro-fuzzy inference system (ANFIS). The results of his research
concluded that the ANN and ANFIS models can predict the 28-day concrete compressive strength more
accurately and the ANN model can perform better than the ANFIS model in terms of R2. The ANN and
ANFIS models are preferred because the nonlinear correlation between the input variables presented
is better. The ANN and ANFIS models have higher accuracy requirements than the multiple linear
regression (MLR) model. The accuracy of the prediction is very much dependent on the number of
input variables.; Tthe greater the number of input parameters, the more accurate the results of the
predictor model will be.

Xuan Li et al. (2019) [41] predict the service life of corroded concrete sewer pipes using three data-
driven models, namely multiple linear regression (MLR), artificial neural networks (ANN), and

order.
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adaptive neuro-fuzzy inference system (ANFIS). The one conclusion suggests that the ANN and ANFIS
models perform better than the MLR models for corrosion prediction, with or without considering the
interactions between environmental factors.

The ANN data is divided into three different subsets [40], namely: (1) Training; at this stage, the
subset is trained and studied as occurs in the human brain, where the number of epochs is repeated
until an acceptable model accuracy is obtained; (2) Validation:; at this stage, the subset shows how well
the model is trained, and estimates model properties such as misclassification, mean error for numerical
predictors; and (3) Test:; at this stage, the subset verifies the performance of the training subset built
into the ANN model.

This paper uses even load input data, while the target data is the displacement of the laboratory
test results. The distribution of the ANN model data composition consists of training 70%, validation
15%, and testing 15%. ANN architecture on a rectangular beam is shown in Figure 5. The process of
implementing input data in the ANN model architecture consists of (1) Input layer,; consisting of 1
neuron, namely displacement data variable of experimental results; (2) Hidden layer,; consisting of 10
neurons. At this stage, the input layer will forward the data to the hidden layer or the output layer
through a set of weights. This weight is a link from each neuron to other neurons in the next layer which
will help adjust the ANN structure to the given displacement data pattern using learning. In the
learning process, the weights will be updated continuously until one of the numbers of iterations,
errors, and processing time has been reached. This is done to adjust the ANN structure to the desired
pattern based on certain problems that will be solved using ANN. Weight er-what is known as the
independent parameter. During the training process, the weights will be modified to improve the
accuracy of the results.;-and The third layer is (3) Output layer, consisting of 1 neuron which is the
expected output target, error, and weight. Error is the error rate of the displacement data node of the
process carried out, while weight is the weight of the displacement data node with a value ranging
between —1 and 1. Then the displacement data resulting from the training process is processed into a
graphic image of the load vs. displacement relationship.

Imput layer :>
(1 Neuron)
Hidden layer :>
(10 Neurons) 0000
Output layer s
(1 Neuron)

Figure 5. Schematic of Artificial Neural Networks (ANN) model architecture for BRC beam and
SRC beam.

3. Results

3.1. Experimental

Table 5 shows the results of theoretical calculations and experiments for BRC and SRC beams.
From the theoretical calculation, the BRC beam has an initial crack load of 6.87 kN and an SRC beam
of 6.51 kN. The laboratory test results of the BRC beam experienced an initial crack at a load of 7.69
kN and an SRC beam had an initial crack at a load of 10 kN. The average ultimate load of the BRC
beam occurs at a load of 31.31 kN or 97.27% of the theoretical collapse load of 32.19 kN.; Tthis shows
that with the correct treatment of bamboo reinforcement, the BRC beam can reach load capacity
according to the results of the theoretical calculations. As is known, the researchers concluded that
the ultimate load of BRC beams is very low when compared to the theoretical calculations. -inckuding
{H-_Dewi et al. (2017) [42] concluded that the bending capacity of bamboo reinforced concrete beams
only reaches 56% of its capacity if the tensile strength of bamboo is full 42} Nathan (2014) [43]
concluded that the flexural capacity of reinforced concrete beams only reaches 29% to 39% of the
beam capacity steel-reinforced concrete with the same width and reinforcement dimensions.+3)-ane
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Khare (2005) [44] concluded that the flexural capacity of reinforced concrete beams is only 35% of
steel-reinforced concrete beams at the same strength level.

SRC beams reach a collapse load of 24 kN or almost approaching the theoretical collapse load of
24.12 kN.; Tthis shows that the adhesion strength of steel-reinforcement with concrete is higher.
Figures 6 and 7 show that the relationship of the load vs. displacement of the BRC beam and the SRC
beam is different. The SRC beam shows the regions of the elastic limit, elastoplastic limit, and plastic
limit. Meanwhile, the BRC beam only shows the plastic limit point or the ultimate load point. This
shows that the behavior of reinforced concrete beams is very much determined by the properties and
characteristics of the materials used.

P =-0.1418A% - 4.2539A + 0.5899
R?=0.9769

—— BRCBeam - Exp

Load, P (kN)

o 2 4 - 5 10 12 4 16
Displacement, A (mm)

Figure 6. The relationship of load vs. displacement of BRC beam of experimental results.

Plastic limit

\_Elastoplastic limit

Load, P (kN)

SRC Beam - Exp
Elastic limit

0 2 4 - 3 a0 2 4 a6
Displacement, A (mm)

Figure 7. The relationship of load vs. displacement of SRC beam of experimental results.

Mechanical properties and characteristics of steel and bamboo materials are the dominant factors
in the behavior model of the load and displacement relationship [6]. The difference between the stress
and strain relationship patterns of bamboo and steel is in the position of the melting point and the
fracture stress. Steel material shows a clear melting point, while bamboo reinforcement does not show
a clear melting point. However, after the fracture stress, the relationship pattern of the stress-strain
relationship tends to return to zero.; Tthis shows that bamboo has good elastic properties [7].

Table 5. Results of theoretical calculations and experimental for the load capacity of BRC beams and

SRC beams.
Theoret}cal Flexural Test Results
Calculations
Specime  Sample First ] First ] ;
ns no Ultimate Failure Displacement
Crack Crack . Per/Put
Load Load, Puit at Failure
Load (kN) Load, (&N) (mm) (%)
(kN) Per (kN)
i 1 8.50 31.50 10.92 26.98
(a) BRC 6.90 32.20

1 2 8.00 29.00 11.90 27.59
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(b) BRC- 3 7.00 31.00 13.02 22.58
2 4 7.50 33.00 12.18 22.73

() BRC-3 5 8.00 33.50 14.69 23.88
6 7.50 33.00 9.32 22.73

(d) BRC- 7 7.50 29.50 7.61 2542
4 8 7.50 30.00 10.69 25.00
Average: 7.69 31.31 24.61

(e) SRC 9 6.50 2420 10.00 24.00 6.33 41.57

3.2. Validation with the ANN Method

The load vs. displacement relationship data from the experimental results is the basis used for
the train and the network. Neural networks are designed by determining their structure
experimentally. The data that trains the artificial neural network is the input, and the ability to
reproduce the training pattern is tested. Convergence analysis was carried out to determine the
optimal number of neurons in the hidden layer of ANN. Excessive neurons reduce the computational
performance of ANN, whereas a lack of neurons causes difficulties in characterizing the input-output
relationship. As suggested by Caudill and Mishra et al. (2019) [45], the upper limit of the number of
neurons in the hidden layer is twice the number of inputs plus 1. After the number of neurons in the
hidden layer is reached, the MSE, RMSE, and R? observations are stopped and no increase is assumed
significant. The artificial neural network architecture used in this paper: IHO: 1-10-1 [Input-Hidden-
Output] means that this artificial neural network consists of 1 input neuron, one hidden layer with
10 neurons, and 1 output neuron (predictive values of the load vs. displacement relationship).

Table 6 presents the performance results of ANN architecture for ten simulations. The process
which has the lowest MSE is selected for comparison with experimental data. Figures 8-12 illustrate
the prediction of the load vs. displacement of the BRC and SRC beams obtained when using the ANN
model after training and when using the data obtained experimentally for training data, validation
data, test data, and all data. Figures 8-12 shows the correlation between the value of the BRC beam
and the SRC beam relationship obtained in the laboratory and the load vs. displacement values
obtained using ANN analysis. The convergence of the position of the point with the line y = x
indicates the identification of values with very high accuracy. The correlation value of laboratory data
using ANN shows an average value of R Square of 0.999.; Tthis indicates that the two results are
consistent. The prediction results of the ANN method show that the percentage of errors is very small,
with a maximum error of 0.26%. Overall, the comparison of experimental data with the predicted
results of the ANN method shows an error of not more than 1%. From the data from the two analyszes
and the load vs. displacement relationship pattern, it can be concluded that the stiffness of the BRC
beam has similarities.

Table 6. The validation results of the relationship load vs. displacement using the ANN method.

Specimens The Correlation Coefficient (R) Mean Square Error (MSE)
Training Validation Testing Training Validation Testing
BRC-1 1.0000 0.9999 0.9997 0.0004 0.0011 0.0110
BRC-2 0.9999 0.9997 0.9999 0.0038 0.0276 0.0048
BRC-3 0.9998 0.9999 0.9993 0.0034 0.0075 0.0152
BRC-4 1.0000 1.0000 1.0000 0.0001 0.0009 0.0010

SRC 1.0000 1.0000 0.9997 0.0001 0.0027 0.0006
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Figure 12. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (SRC).

The data merger of ANN analysis results from each BRC beam specimen into a load vs.
displacement relationship. The merger is done to determine the suitability of the load vs.
displacement relationship model through the R? parameter. From the results of the regression
analysis, it is found that R? = 0.9771, or almost close to 1; Tthis shows that the model has high
suitability, as shown in Figure 13. Figure 13 illustrates the load vs. displacement relationship for all
BRC beam typologies from ANN analysis.
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3.3. Validation with the Finite Element Method

Validation of the relationship of load vs. displacement with the finite element method is done
by inputting the geometry of the cross-section, load data, modulus of elasticity (E) per layer, and
Poisson’s ratio (v). The load vs. displacement relationship diagram of the experimental results as
shown in Figures 6 and 7 is used as a guide for the stages of the analysis process using the finite
element method. And the cross-sectional stiffness input via the per-layer modulus of elasticity (E) is
shown in Tables 7 and 8. The analysis execution using the finite element method uses the Fortran
PowerStation 4.0 program. The process of calculating displacement and stress with the Fortran
PowerStation 4.0 program is carried out in stages according to the loading and stiffness stages per
layer from the beam’s elastic condition, initial crack, elastoplastic, and plastic conditions until the
beam collapses. The displacement data resulting from the finite element method is processed into a
load vs. displacement relationship as shown in Figure 14. TThe displacement when-of the load ultimate
is shown in Figure 15 for BRC beams and Figure 16 for SRC beamsL The stress contours at the time of

C

the load collapse are shown in Figure 17 for BRC beams and Figure 18 for SRC beams.
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Figure 14. The relationship of load vs. displacement of BRC beam of finite element method (FEM)
results.
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Table 7. The modulus of elasticity for each layer of the BRC beam in the non-linear phase.

Modulus of Elasticity (E) of the BRC Beam

Layer

Numb Elastic Condition Plastic Conditions with Gradual Loads
um| T
¢ 0-8.5 kN 9 kN 11 kN 13 kN 15 kN 17 kN 19 kN 21 kN 23 kN 25 kN 27 kN 29 kN 31 kN 33 k
4t11'1am:rsh 26851.29 16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  12,083.08 11,277.54  11,277.54 8592
y
3th mesh
layer 26851.29 16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77  16,110.77 1208.31 10,740.52 9397.95 9397.95 7518
2nd mesh
layer 23140.89 13,884.53 11,570.44 11,57044 11,570.44 11,57044 10,413.40 10,413.40 10,413.40  10,413.40 6942.27 6942.27 6942.27 5553
Ist mesh 26851.29 13,425.65 11,814.57  10,203.49 8323.90 6712.82 5101.75 5101.75 5101.75 3759.18 3222.16 2685.13 1611.08 1329

layer
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Table 8. The modulus of elasticity for each layer of the SRC beam in the non-linear phase.
Modulus of Elasticity (E) of the SRC Beam
Layer Number Elastic Condition Plastic Conditions with Gradual Loads
0-9 kN 10 kN 11 kN 12 kN 13 kN 15 kN 17 kN 19 KN 21 KN 23 kN 24 kN
4th mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 20,138.47 20,138.47 20,138.47 18,79590 18,795.90 13,425.65 11,411.80
3th mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 18,795.90 18,795.90 18,795.90 17,453.34 17,453.34 13,425.65 11,411.80
2nd mesh layer 43,209.32 43,209.32  30,586.93 30,586.93 28,547.80 28,547.80 26,508.67 26,508.67 24,469.54 20,391,29 17,332.60
1st mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 18,795.90 18,795.90 17,453.34 16,110.77 14,768.21 13,425.65 12,083.08
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4. Discussion

Merging is carried out on the load vs. displacement relationship diagram from the experimental
results, ANN analysis, and finite element method (FEM) analysis. Figure 19 shows the combined load
vs. displacement diagram of the ANN analysis results with the experimental results. Figure 19 shows
that the load vs. displacement relationship diagram the two analyszes results are very coincided or
show high suitability. However, at a load of approximately 90% of the collapse load, the load vs.
displacement relationship diagram shows different behavior. Figure 20 shows the combined load vs.
displacement diagram of the experimental results, ANN analysis, and the results of the finite element
method analysis. Figure 19 shows that the artificial neural networks (ANN) model has a higher R?
value when compared to the R? value of the multiple linear regression model (MLR). ANN analysis
has better predictive accuracy. This is the same as the conclusion of 2 researchers, namely Khademi
et al. (2017) [40], whoieh concluded that tThe ANN model has higher accuracy than the multiple
linear regression (MLR) model, and Xuan Li et al. (2019) [41], who concluded that the ANN model
performs better than the MLR models with or without considering the interactions between factors.
The accuracy of the prediction is very much dependent on the number of input variables.; Tthe
greater the number of input parameters, the more accurate the results of the predicted model.

The diagram of the relationship between load and displacement of the BRC beam from FEM
analysis and experimental results shows the difference in elastic conditions or until the initial crack
occurs. The experimental results showed negative differences with the results of the FEM analysis.
This shows the influence of the nature and characteristics of bamboo. The parts of bamboo stems
have a non-uniform or uncertain modulus of elasticity. Tensile strength and modulus of elasticity of
bamboo tested in the laboratory are sometimes different from bamboo which is used as beam
reinforcement. As is known, bamboo trees from base to tip have different tensile strength and fiber
density. Meanwhile, the load vs. displacement diagram of the SRC beam experiment results has a
positive difference with the results of the FEM analysis when the elastic condition occurs or until the
initial crack occursL Positive differences can be ignored, in the sense that the quality of the steel used

C
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is better than the quality of steel tested in the laboratory. However, in this study, the analysis of
stiffness reduction in BRC and SRC beams was focused after the beam experienced an initial crack or
non-linear phase.
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Figure 19. The combined of the load vs. displacement relationship of BRC beam of the experimental
results and ANN analysis.
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Figure 20 shows that inelastic conditions there is a difference in stiffness between the two types
of beams. The stiffness of bamboo reinforced concrete beams (BRC) is lower than the stiffness of steel-
reinforced concrete beams (SRC). This difference occurs not due to reduced cross-section inertia or Ig
of cross-sectional reduction, but due to the nature of the material used. This is because the BRC beam
uses bamboo reinforcing material, which has high elastic and resilience properties. BRC beams with
bamboo reinforcement will be able to accept high impact loads without causing over stress at the
elastic limit, even though displacement has occurred. This indicates that the energy absorbed during
loading is stored and released if the material is not loaded. Meanwhile, the SRC beam uses steel
material that has high stiffness and toughness, so that the SRC beam in the service load range or
elastic conditions;-the-beam does not experience excessive displacement or deformation. Beams that
use materials with high stiffness and toughness will be able to withstand high impact loads or shock
loads. If the SRC beam gets an impact load, then some of the energy is absorbed and some of the
energy is transferred.

In the non-linear phase or after initial cracking, the beam stiffness changes from the full-sectional
flexural stiffness, Ecl, to the effective bending stiffness, Eclf. In the non-linear phase, the stiffness of
the beam section continues to decrease with increasing loads, moments, and cracks. The area of the
beam section continues to decrease with increasing cracks and automatically causes the beam section
stiffness (Ecly) to decrease. As shown in Table 6 and Figure 21, the stiffness of the BRC beam decreases
after the initial cracking occurs as the increasing loading stage is applied. The increase in load causes
the flexural moment to increase, the displacement increases, and the crack propagation continues to
spread towards the compressed block of the beam cross-section. The crack propagation from 1st mesh
layer to the 2nd mesh layer onwards runs linearly with reduced cross-sectional stiffness from the
lower fiber of the cross-section tensile block to the upper fiber of the compressive block of the beam
cross-section. The increase in crack propagation towards the compressive block of cross-section
causes the neutral line to change. Chunyu Fu et al. (2018) [13] concluded that the presence of cracks
causes a nonlinear stress distribution along the beam cross-section, which changes the neutral axis of
the cross-section and further affects the stiffness of the beam. Figure 21 shows that the stiffness of the
BRC beam cross-section decreases from the initial crack until the beam collapses. The stiffness of BRC
beams is reduced by 50% after initial cracking to 95% at collapse. The stiffness reduction goes step by
step according to the moment (M.) applied to the beam. Sang-Whan Han et al. (2009) [4] revealed that
the stiffness reduction factor was significantly affected by the amount of moment or the applied load,
while the stiffness reduction factor did not differ from the amount of reinforcement. The decrease in
the moment of inertia of the full cross-sectional Ig of the BRC beam ranged from 0.51;—0.05I; for the
elastoplastic and plastic regions. Meanwhile, ACI-318M-14 [5] recommends the stiffness of the beam
cross-section for elastic analysis in the non-linear phase of 0.5I;—0.25I;. The difference in the value of
the reduction in the stiffness of the cross-section at collapse correlates with the differences in the
properties and characteristics of the material used as beam reinforcement. Bamboo reinforced
concrete beams (BRC) exhibit high displacement behavior, but once the collapse load is reached and
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gradually released, displacement tends to return to zero. It is linear with its elastic properties and the
stress vs. strain relationship behavior of bamboo.
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Figure 21. Decreased stiffness of BRC beam cross-section in the span middle.

Table 7 and Figure 22 show a decrease in stiffness or a decrease in the moment of inertia of the
SRC beam cross-section. Stiffness decreases after initial cracking as the applied load increases. Figure
22 shows that the cross-sectional stiffness of the SRC beam decreases from the initial crack until the
beam collapses. The stiffness of the SRC beam was reduced by 25% after initial cracking to 60% at
collapse. The decrease in the moment of inertia full cross-section (Is) for SRC beams ranged from
0.75I;—0.401; for the elastoplastic and plastic regions. Meanwhile, ACI-318M-14 [5] recommends the
cross-sectional stiffness of reinforced concrete beams for elastic analysis in the non-linear phase of
0.51;—0.25I;. The difference in the value of the reduction in the cross-sectional stiffness of the SRC
beam with the ACI-318M-14 [5] requirements is due to the beam cross-section reinforcement method,
namely the SRC beam in this study using a single reinforcement method. SRC beam with single
reinforcement shows that when the steel reinforcement undergoes second melting and the moment
of inertia of the cross-section is still around 40%, the steel reinforcement is not able to withstand the
tensile stress that occurs so that the neutral line of the cross-section continues to shift upwards
towards the upper fiber of the compression block of the cross-section. Meanwhile, BRC beams with
bamboo reinforcement have good elastic properties, where after the ultimate load is reached, the
large displacement shrinks back to near-zero or the beam returns flat [7], as shown in the video at the
following link: https://goo.gl/6AVWmP. Although the stiffness or inertia of the BRC beam cross-
section is still around 5%, bamboo reinforcement is still able to withstand the tensile stress that occurs,
as stated by Ghavami (2005) [24] that bamboo has high tensile strength. If we control with the crack
pattern, the crack lines on the BRC beam majority stop below the cross-section neutral line, while the
crack lines on the SRC beam tend to continue to propagate upwards towards the upper fibers of the
compressive block of the beam cross-section, as shown in Figures 23 and 24. And if we look at Figures
17 and 18, the tensile stress contour of the BRC beam has a wider zone and spreads to the side when
compared to the SRC beam.
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Figures 25 and 26 show the relationship between the stiffness reduction factor (¢x) and the Mo/Mer
of the BRC beam and the SRC beam. The stiffness reduction factor (¢x) is the ratio of the moment of
inertia of the effective section () divided by the moment of inertia of the cross-section (Is). The
stiffness reduction factor (¢x) is significantly influenced by the applied moment level. The equation
of the beam stiffness reduction factor is related to the ratio between the applied moment and an initial
crack moment or Ms/Mer. The equation for the stiffness reduction factor is shown in Eequation (5) or
Eequation (6) for a BRC beam. TAnd-the stiffness reduction factor equation for the SRC beam is
shown in Eequation (7) or Eequation (8). Figure 27 shows a comparison of the relationship between
the stiffness reduction factor and the Ms/M.rof the BRC beam and SRC beam. The diagram of the
relationship between the stiffness reduction factor and Mi«/Mcshows that the SRC beam has a smaller
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stiffness reduction factor than the BRC beam in the non-linear phase. However, the SRC beam shows
a collapse at the moment of inertia of the effective cross-section (), which is relatively still large when
compared to BRC beams. BRC beams collapse at the effective cross-section inertia of about 5%, and
SRC beams collapse at the effective section inertia of about 40%. The alternative of moments of inertia
from various sources is shown in Table 9.

M,
o = 0.64670.1023(/\/[” J

cr

g

Lo _0.646-0.1023
[8

N

cr

a
a

<

N

cr

<

a

Le _0.697-0.1472
Ig

g

)
¢K:o.69770‘1472[ ]
)

cr

0.6 T
id
8
£ [
] by =-0.1023(M,/M.,) + 0.646
= R2=0.938
5
£ Jroa g
3~
SR
I
& S03 1
@ =
g
£ — BRC - Beam -
= 02 1+
[
0.1 + + + + + i
1.0 15 2.0 25 3.0 3.5 4.0
M,/M,,

Figure 25. The relationship of the stiffness reduction factor (¢«x) and the Mi/M.r of the BRC beam.

0.60

i =-0.1472(M,/M,,) + 0.697

-
=]
2
s

0.50
254
s N R2=0.849
=2 o
i3
2 W 040
2 x
e 2
3
E 0.30 —— SRC - Beam A
=
b=}
wn

0.20

1.00 1.50 2.00 2.50
M,/M,,

Figure 26. The relationship of the stiffness reduction factor (¢x) and the Ms/M.r of the SRC beam.

©)

(©)

@)

®



Forests 2020, 11, x FOR PEER REVIEW 24 of 27

0.60 T
L__ M,
= —0.1023 72 +0.646 }

0.50 +
H ——— BRC - Beam
8
o
(]
=
g 0.40 +
G
5~
'g 1} 0.30 +
& I M
- = - = —0.1472—= +0.697
@ Iy M,
]
& 020 1 —— SRC-Beam
S
=
9]

0.10 + + + + + 1

1.00 1.50 2.00 2.50 3.00 3.50 4.00

M,/M,,

Figure 27. Comparison of the relationship of the stiffness reduction factor (¢«) and the M«/Mer of the
BRC beam and SRC beam.

Table 9. The alternative value of I for elastic analysis from various sources.

Source and Information Alternative value of I for elastic analysis
ACI-318M-14 [5] 0.25I—0.5I,
FEMA 356-2000 [46] 0.5 EI,—0.8EI;
New Zealand Code [47] 0.35I;
Paulay and Priestley, 1992 [48] 0.30I;—0.501¢
In this research (singly reinforced beam)
- BRC Beam 0.051,—0.51,
- SRC Beam 0.41,—0.75I,

5. Conclusions

The relationship pattern of load vs. displacement reflects the stiffness pattern of structural
elements. The properties and characteristics of the material in the reinforcing concrete elements have
a dominant influence on the relationship pattern of the load vs. displacement of reinforced concrete
elements. Bamboo reinforced concrete beams (BRC) have a different load vs. displacement
relationship pattern when compared to steel reinforced concrete beams (SRC). BRC beams have
elastic properties and high resilience properties that can accept high impact loads without causing
over stress at the elastic limit, even though displacement has occurred. While SRC beams have high
stiffness and toughness so that SRC beams are not subject to excessive displacement or deformation
at service load ranges or elastic conditions.

Results of the validation of the relationship pattern of the load vs. displacement of the BRC
beams shows that the ANN model has a higher R? value when compared to the R? value of the MLR
model. ANN analysis has a higher prediction accuracy. The accuracy of the prediction depends very
much on the number of input variables.; Tthe greater the number of input parameters, the more
accurate the prediction model results.

The cross-sectional stiffness of BRC beams is reduced by 50% after initial cracking and reduced
by 95% at collapse. The cross-sectional stiffness of the SRC beam was reduced by 25% after initial
cracking and reduced by 60% at collapse. The reduction in stiffness is significantly affected by the
amount of applied moment (M:) or the load applied that causeding cracks and a reduction in the
moment of inertia of the cross-section.

The initial decrease in cross-sectional stiffness of BRC beams occurs at a load of about 24% of the
ultimate load and BRC beams occur at loads of about 40% ultimate load. BRC beam collapse occurs
when the moment of inertia of the effective cross-section (I.) is 5%, while the SRC beam collapse
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occurs when the moment of inertia of the effective cross-section (L) is 40%. The reduction in stiffness
in the cross-section of the beam in the non-linear phase ranged from 0.5/;—0.05I; for BRC beams, and
0.751;—0.40I; for SRC beams. ACI-318M-14 standard recommends the cross-sectional stiffness of
reinforced concrete beams for elastic analysis in the non-linear phase of 0.5[;—0.25I;.

The SRC beams have a smaller stiffness reduction factor (¢x) than BRC beams in the non-linear
phase. However, the SRC beam shows a collapse at the moment of inertia of the effective cross-section
(). which is relatively large when compared to BRC beams.
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Abstract: This paper discusses the reduction of the stiffness of bamboo reinforced concrete (BRC)
beams to support the use of bamboo as an environmentally friendly building material. Calculation
of cross-section stiffness in numerical analysis is very important, especially in the non-linear phase.
After the initial crack occurs, the stiffness of the cross-section will decrease with increasing load
and crack propagation. The calculation of the stiffness in the cross-section of the concrete beam in
the non-linear phase is usually approximated by giving a reduction in stiffness. ACI 318-14
provides an alternative, reducing the stiffness of the plastic post-linear beam section through the
moment of inertia (I) of the beam section for elastic analysis between O.SOIXH).ZSIg. This study aims
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to predict the value of the reduction in the stiffness of the BRC beam section in the non-linear phase
through the load-displacement relationship of experimental results validated by the Finite Element
Method (FEM) and the Artificial Neural Networks (ANN) method. The experiment used 8 BRC
beams and one steel-reinforced concrete (SRC) beam of singly reinforced with a size of 75 mm ix 150
mm x ‘1100 mm. The beams were tested using a four-point loading method. The analysis results
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showed that the value of the stiffness reduction in the beam cross-sectional in the non-linear phase
ranged from 0.5I;—0.05I; for BRC beams, and 0.75I;—0.40I; for SRC beams.

Keywords: stiffness reduction; bamboo reinforced concrete (BRC); finite element method (FEM);
artificial neural networks (ANN)

1. Introduction

The impact of increasing industrial development is that it can cause pollution of air, water, soil,
and noise. The use of industrial building materials such as ceramics, steel, concrete, and other
materials has led to an increase in environmental pollution. The procurement of wood forests or
bamboo forests must be done as a counterweight to environmental pollution. Pandey et al. (2017) [1]
tons of O: for every cubic meter of growth. The use of environmentally friendly building materials
such as wood and bamboo must be done. Bamboo is a forest product that provides high economic
and ecological value to the community. Bamboo also has enormous potential with promising
prospects [3]. Bamboo is one of the commodities produced by Community Forests. However,
research on the behavior of bamboo as a building material is mandatory, such as research on the
stiffness of bamboo reinforced concrete (BRC) beams.

The stiffness reduction factor is a multiplier to reduce the moment of inertia in gross
cross-sectional, and the gross cross-sectional area remains constant. These factors are conservatively
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enforced by various concrete standards to account for the loss of stiffness in the concrete
cross-section due to the cracking of the concrete. The stiffness of the beam cross-section in the elastic
phase or linear phase indicates the full section flexural stiffness, Ecl;, whereas in the non-linear phase
or after the initial crack, the gross cross-section bending stiffness is reduced to the effective flexural
stiffness, Ecdes. The stiffness reduction factor is significantly influenced by the amount of moment or
the applied load, while the stiffness reduction factor does not differ from the amount of
reinforcement [4]. ACI 318M-14 [5] shows that the gross section flexural stiffness, Ecl, is reduced to
obtain the effective flexural stiffness, Ecl,, which causes cracking and other softening effects. As the
moment in the concrete section increases, the flexural stiffness will be reduced due to the cracks that
continue to propagate and spread. ACI 318M-14 [5] provides stiffness reduction limits for elastic
analysis with a moment of inertia limits between 0.25I;-0.5I; for concrete beams. The equation for the
moment of inertia effective (I) is determined in ACI 318-05 [5] Section 9.5.2.3L as shown in Equation

@)
M ) Mg )’

Ie:[M—:’] Ig{l[M:] }Icr 10
where I; = moment of inertia of the gross concrete section and Ir = moment of inertia of the crack
section including the reinforcement. The moment of inertial effective (I) as shown in Equation (1)
will decrease as the moment that occurs, M.. Calculation of the moment of inertia of the crack
cross-section, I at Equation (1) must pay attention to the number of reinforcement installed.
However, the amount of reinforcement is not determined at the initial design stage.

The process of stiffness reduction in the beam section starts from the “no crack” and “cracked”
conditions in the section. In the service load condition or the elastic condition, the stiffness of the
beam section is in full condition, even though the moment due to the load continues to increase. In
the elastic condition, the moment that occurs (M.) is still below the moment of cracking (M), or the
tensile stress of the concrete is still below the modulus of rupture of the concrete beam cross-section,
fr. In the elastic conditions, the difference in stiffness between two different types of beams usually
occurs not due to reduced inertia of the cross-section, but due to the properties of the materials used.
For example, the stiffness of bamboo reinforced concrete beams is different from the stiffness of
steel-reinforced concrete (SRC) beams. In the elastic conditions, the stiffness of BRC beams is lower
than the stiffness of SRC beams [6-8]. This is because BRC beams use bamboo reinforcing materials
which have elastic properties and high resilience properties. BRC beams with bamboo reinforcement
will be able to accept high impact loads without causing stress over the elastic limit, even though
displacement has occurred. This indicates that the energy absorbed during loading is stored and
released if the material is not loaded.

Meanwhile, the SRC beam uses steel material that has high stiffness and toughness, so that the
SRC beam in the service load range or elastic condition does not experience displacement or
excessive deformation. Beams that use materials with high stiffness and toughness will be able to
withstand high impact loads or shock loads. If the SRC beam gets an impact load, then some of the
energy is absorbed and some of the energy is transferred.

Research on modeling and stiffness reduction has been carried out by many researchers. Kai
Zhang et al. (2020) [9] investigated the effect of electrochemical rehabilitation (ER) techniques on the
fatigue stiffness of RC beams. The results of his research indicated that electrochemical rehabilitation
(ER) exacerbated bond breakage, thereby reducing the flexural stiffness of RC beams. Salam
Al-Sabah et al. [10] discuss the use of negative stiffness in the failure analysis of concrete beams. In
his research, Salman Al-Sabah et al. concluded that the effective and simple one-dimensional
stress-strain behavior of concrete was used to study concrete blocks with proportional loading, the
only source of non-linearity to consider cracks in concrete. Hong-Song Hu et al. (2016) [11]
investigated the effectiveness of square tFSﬂ rod stiffness, and the results proposed an equation for
the effective stiffness of square CFST rods. Mubhtar et al. [7] tested the flexural of BRC beams and
SRC beams, the results showed that the stiffness decreased after the initial cracking. The average
stiffness of the BRC beam decreased from 26,324.76 MPa before cracking to 6581.20 MPa after
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collapse [7], while the average value of SRC beam stiffness decreased from 30,334.11 MPa before
cracking to 16873.35 MPa after the collapse.

K.A. Patela et al. (2014) [12], in their paper, provide an explicit expression for the effective
moment of inertia by considering cracks for reinforced concrete beams (RC) with uniformly
distributed loads. The proposed explicit expressions can be used to predict short-run displacement
in-service load. The sensitivity analysis shows a substantial dependence of the effective moment of
inertia on the selected input parameter. Displacement is an important parameter for examining the
serviceability criteria of structures. The short-term displacement is generally calculated using the
effective moment of inertia across the span at the service load [12]. Chunyu Fu (2018) [13] presents a
method of estimating the stiffness of cracked beams based on the stress distribution. In his
conclusion, he said that the presence of cracks causes a nonlinear stress distribution along the beam
section, which changes the neutral axis of the cross-section and further affects the stiffness of the
beam. J.R. Pique (2008) [14] concluded that when the design is controlled by the minimum
reinforcement, especially in the beam, special attention should be paid to the calculation of the real
period and maximum distortion. The effective stiffness of the beam with the minimum steel ratio is
much lower than that obtained by the proposed reduction factor. As a result, the actual period and
actual maximum distortion can be greater. Akmaluddin et al. (2012) [15] concluded that the moment
of crack and the value of the moment of inertia of the crack was significantly affected by the presence
of bamboo reinforcement in the beam. The experimental results show that the crack moment varies
from 0.3 to 0.7 from the ultimate moment. The experimental and theoretical crack moment ratio
varies from 0.90 to 1.42. flker Kalkan (2013) and [16] concluded that the effective moment of inertia
and load-displacement curve analysis is highly dependent on the crack moment used in the
expression analysis of the effective moment of inertia. Therefore, the experimental cracking moment
of the beam should be used in the calculation of the effective moment of inertia for a more accurate
comparison of the different analytical methods. Chunyu Fu et al. (2020) [17] concluded that cracking
of concrete causes a gradual change in the distribution of strain along with the cross-sectional height
of reinforced concrete beams, which in turn affects the instantaneous stiffness. The instantaneous
stiffness proved to be highly dependent on the number and depth of cracks. This dependence can be
accurately reflected by the method proposed by simulating a gradual change in the concrete strain
distribution. Xiuling Feng et al. (2013) [18] examines the reduction factor of flexural stiffness in
reinforced concrete columns with an equiaxial cross-section and suggests that the reduction factor is
proposed by considering the nonlinear characteristics of the material and its geometric nonlinearity.

The difference in the nonlinear characteristics of the material used in the BRC beam and the
SRC beam greatly determines the flexural behavior of the beam. Bamboo reinforced concrete beams
have low stiffness and tend to be large displacement. The solution to increasing the stiffness of BRC
beams is to use shear reinforcement and the principle of confined concrete [7,19]. In the linear elastic
condition, the BRC beam has shown a large displacement, but when the ultimate load is reached and
the loading is released gradually, the displacement tends to return to zero. In this study, the
reduction of stiffness in the non-linear phase was analyzed through the load vs. displacements that
were validated using the finite element method (FEM) and the Artificial Neural Networks (ANN)
method. It is suspected that the reduction of the cross-sectional stiffness of the BRC beam is different
from the reduction in the stiffness of the SRC beam section. The parameter of the moment of inertia
of the cross-section becomes a benchmark in determining the reduction of stiffness according to
ACI-318M-14 [5].

2. Materials and Methods

2.1. Treatment of Materials

In this study, the treatment of bamboo material as concrete reinforcement is an important thing
to do. The bamboo used is the bamboo “petung” (Dendrocalamus asper) which is between three and
five years old [20-22]. The part of bamboo that is used as reinforcing of concrete is 67 m long from
the base of the bamboo stem [23]. Bamboo is cut according to the size of the bamboo reinforcement to
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be used, which is 15 x 15 mm?2. Then, bamboo is soaked for +20-30 days [21]. After soaking, bamboo
is dried in free air until it has an absorption level of + 12%.

Application of adhesive or waterproof coating [24,25] is done after the bamboo reinforcement is
cleaned and trimmed according to the planned size. The application of a waterproof layer is carried
out to prevent the hydrolysis process between bamboo and concrete. Sand sprinkling on bamboo
reinforcement is done when the adhesive is half dry to make it stronger [21,26]. The application of
sand aims to increase the adhesion strength of bamboo reinforcement to concrete.

An installation of a hose-clamp at both ends of the bamboo reinforcement is done to match the
concept of hooks or bends in steel reinforcement. An installation of the hose-clamp only on tensile
reinforcement is done to increase bond-stress between bamboo reinforcement and concrete [27,28].
The tensile force on the bamboo reinforcement will be distributed to the concrete through the
hose-clamp, which functions as a shear connector. Bamboo treatment is shown in Figure 1.

% Sand

Sikadur®-752

9 Bamboo reinforcement
with Sikadur®-752

Bamboo reinforcement
with Sikadur®-752
coating and sand

Bamboo reinforcement
with hose-clamp

Figure 1. The materials and treatments of bamboo reinforcement.

2.2. Materials

The concrete mixture used in this study is a normal concrete mixture consisting of Portland
Pozzolana Cement (PPC), sand, coarse aggregate, and water with a proportion of 1:1.8:2.82:0.52.
Sand and gravel come from the Jember area of Indonesia. The cylindrical specimen measures 150
mm in diameter and 300 mm in height. The cylindrical specimens were press-tested using a
Universal Testing Machine (UTM) with a capacity of 2000 kN after the concrete was 28 days old. The
procedure for the cylinder specimen compressive test follows ASTM C 39 [29]. The average
compressive strength of cylindrical concrete is 31.31 MPa with an average weight of 125.21 N. The
properties and characteristics of the concrete are shown in Table 1.

Table 1. Material properties of reinforcing and concrete.

Bar

Type . Modulus of . , Tensile Compressive

and Dla(nr:;tsr, d Elasticity (E), I;:;;ZOE/)S Strength, fy  Strength, [
Concret (MPa) (MPa) (MPa)

e

Bamboo  [n/15x 15 17,235.74 0.20 126.68 -

Steel ¢8 207,735.92 0.25 392.28 -
Cor:ret - 26,324.79 0.30 - 31.31

The tensile test of bamboo reinforcement produces the average tensile stress of 126.68 N/mm?
with an average strain of 0.0074. The modulus of elasticity of bamboo reinforcement was calculated
using the formula E = o/¢ and obtained 17,235.74 MPa. The modulus of elasticity of steel is obtained
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by 207,735.92 MPa. The properties and characteristics of bamboo and steel reinforcement are shown

in Table 1.

The adhesive layer or waterproof coating used was Sikadur®-752 produced by PT. SIKA
Indonesia [30]. The specifications for the adhesive sikadur®-752 are shown in Table 2. Installation of

hose-clamp on bamboo reinforcement is done when the waterproof layer is half dry [21]. The

diameter of the hose-clamp used is %" made in Taiwan.

Table 2. The specification of Sikadur®-752 [30].

Components Properties
Color Yellowish
Density

Approx. 1.08 kg/L

Mix comparison

(weight/volume) zl
Pot life at +30 °C 35 min
Compressive 62 MPa at 7 days (ASTM D-695)
strength 64 MPa at 28 days
Tensile strength 40 MPa at 28 days (ASTM D-790)
Tensile Adhesion 2 MPa (Concrete failure, over mechanically prepared concrete surface)
Strength
Coefficient of
— o [} 6 [}
Thermal Expansion 20°Cto+407C 89 1& h:)er <
Modu.lu.s of 1060 MPa
elasticity

2.3 Experimental Procedure

The test object consisted of 9 beams with a size of 75 mm x 150 mm x 1100 mm, consisting of 8
bamboo reinforced concrete beams (BRC) and one steel-reinforced concrete beam (SRC). Bamboo
reinforcement is installed as tensile reinforcement with a reinforcement area of 450 mm?2. The steel

reinforcement used has a diameter of 8 mm with an area of As = 100.48 mm?. The beam geometry and
reinforcement detail of the BRC and SRC beams are shown in Figure 2.

%P

P
%P /__ Bamboo reinforcement 2 o 15x15 mm*
Strain Gaugerl/ \L A 150 mm
} — m

LVDT%* é TSmm
T S W B 59 |
[ I 1 H
‘% L=1000 mm %‘ BRC Beam
P
%R %P
Strain Gauge Steel bars 2@ 8
150 nm /\/ \A eel bars mm .
. S __25mm
ES “’DTﬁﬁ 4L 75er ~
}5? AL } R 4L ?0} pa
‘% L=1000 mm %‘ SRC Beam

Figure 2. Reinforcement details and beam test settings.

The beam flexural test method was carried out using the four-point method [31]. The test
arrangement and load position are shown in Figure 2. Strain gauges are installed on the bamboo
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reinforcement at a distance of %L from the support of the beam. Beam displacement measures use
Linear Variable Displacement Transducers (LVDT) with a distance of %L from the beam support.

The loading stages from zero to the collapse of the beam are used as a hydraulic jack and a load
cell connected to a load indicator tool. The load reading on the load indicator is used as a hydraulic
jack pump controller, displacement reading, and strain reading according to the planned loading
stage. However, when the test object reaches its ultimate load, the displacement reading controls the
strain and load reading, while the pumping of the hydraulic jack continues slowly according to the
command of the displacement reader. The failure pattern was observed and identified by the cracks
that occurred, from the time of the initial crack until the beam collapsed.

2.4. Validation of Numerical Methods

Walidation of experimental data was found by using the Finite Element Method (FEM) and
Artificial Neural Networks (ANN). TThe relationship between load vs. displacement experiment
results was validated by using the finite element method. The procedure used is inputting material
data and loading stages to determine the behavior of the load vs. displacement of BRC beams and
SRC beams. The data input for the loading stages is carried out following the loading stages from
laboratory experimental data. The numerical method used is the finite element method, using the
Fortran PowerStation 4.0 program [32]. rThe theoretical analysis is used to calculate the load causing
the initial crack using elastic theory (linear analysis) with cross-section transformation. [For linear
analysis, the input material data is the modulus of elasticity (E) and Poisson’s ratio (v). The
calculation of the modulus of elasticity of the composites (Ecomy) is shown in Tables 3 and 4. The
non-linear phase is approximated by decreasing the concrete strength from 0.25 to 0.5 for the
calculation of the effective stiffness in the plastic plane [5]. In the analysis of the finite element
constitutive relationship, the problem-solving method uses the plane-stress theory. Triangular
elements are used to model plane-stress elements with a bidirectional primary displacement at each
point so that the element has six degrees of freedom. The discretization of the beam plane is carried
out using the triangular elements shown in Figure 3 for BRC beams and Figure 4 for SRC beams.
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Figure 3. Discretization of the triangular element on the bamboo reinforced concrete (BRC) beam.
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Figure 4. Discretization of the triangular element on the steel-reinforced concrete (SRC) beam.
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Table 3. Elasticity Modulus of Composite of BRC beam.

Compressive . . . . ..
Layer P v Dimensions of Modulus of Elasticity of the Elasticity Modulus
Number Strength of er Layer Material (E) of Composite (Ecomp)
Concrete, f- P Y 13 comp
Concrete, Ec Bamboo, E»
Mpa b (mm) h (mm) (MPa) (MPa) MPa
4th mesh 31.31 75 50 26,851.29 0 26,851.29
layer
3rd mesh 31.31 75 60 26,851.29 0 26,851.29
layer
2nd mesh 31.31 75 15 26,851.29 1723.57 23,140.89
layer
1st mesh layer 31.31 75 25 26,851.29 0 26,851.29
Table 4. Elasticity Modulus of Composite of SRC beam
Compressive  Dimensions of =~ Modulus of Elasticity of the  Elasticity Modulus
Layer . .
Strength of per Layer Material (E) of Composite (Ecomp)
Number ,
Concrete, f'
Concrete, E. Steel, Es
h ¢ ¢ MP
Mpa b (mm) (mm) (MPa) (MPa) a
4th mesh layer 31.31 5 50 26,851.29 0 26,851.29
3rd mesh layer 31.31 75 67 26,851.29 0 26,851.29
2nd mesh 31.31 75 8 26,851.29 207,735.92 43,209.32
layer
1st mesh layer 31.31 75 25 26,851.29 0 26,851.29

The modulus of elasticity (E) for each layer is calculated according to the condition of the
material. Layers of concrete and bamboo reinforcement are calculated using the following Equation.
(2) [33]-

E.=EV, +E.V, )
where E. = the equivalent elasticity modulus of BRC beam, E» = elastic modulus of bamboo
reinforcement, Ec = modulus of elasticity of concrete, Vi = relative volume of bamboo reinforcement in

calculated layers, and V. = relative volume of concrete in calculated layers. The stress-strain
relationship for plane-stress problems has the shape of an equation such as Equation (3).

o, £ 1 v 0 |le

=—v 1 0 £
O_Y (1+V2) 1—1/ y (3)
Ty 00 = Yy

where E is the modulus of elasticity and v is the Poisson’s ratio. And the principal stresses in two
dimensions are calculated by Equation (4).

o, +o
_ y
012 = 2 T

)

The simulation and steps for preparing a FEM analysis with the Fortran PowerStation 4.0
program [32] are summarized as follows:

Step 1: Discretization of BRC and SRC beam planes with the discretization of triangular elements, the
numbering of triangular elements, and the numbering of nodal points as shown in Figures 3(d) and
Figure 4.

Step 2: Calculation and collection of geometry and material data, such as the modulus of elasticity of
the material (E), Poisson’s ratio (v), etc.
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Step 3: Writing a programming language for triangular elements using the Fortran PowerStation 4.0
program according to the constitutive relationships and FEM modeling as shown in the following link:
http://bit.ly/2F17w8F.

Step 4: Open the Fortran PowerStation 4.0 program. An example is shown at the following link:
http://bit.ly/2MTh22j.

Step 5: Write programming language data (Step 3) in the Fortran PowerStation 4.0 program. Examples
can be seen at the following link: http://bit.ly/2ZvZWMU.

Step 6: Input DATA.DAT of BRC beam and SRC beam in the Fortran PowerStation 4.0 program. Input
data is displayed at the following links: http://bit.ly/351FPqU and http://bit.ly/2MBqas9. An example of
displaying input data is shown on the following link: http://bit.ly/2u2K2xR.

Step 7: Analyze the program until there are no warnings and errors. If there are warnings and errors,
check and correct program data and input data.

Step 8: Download stress data. The stress data are shown at the following link: http://bit.ly/2rDPeal for
the stress of BRC beam, and http://bit.ly/2Q4Ihcl for the stress of the SRC beam. An example of
displaying stress data from the Fortran PowerStation 4.0 program is shown at the following link:
http://bit.ly/2ZybLCd.

Step 9: Download displacement data. An example of displaying data displacement from the Fortran
PowerStation 4.0 program is shown on the following link: http://bit.ly/2Q7j2Wp.

Step 10: Enter stress and displacement data into the Surfer program to obtain contour image data of
stress and displacement. Stress and displacement contour image data are shown in tFigures 15—121

2.4. Validation of Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) is a computational system for solving complex problems in
civil engineering. In this study, the validation carried out by the Artificial Neural Networks (ANN)
method is the validation of the load vs. displacements from laboratory experimental results. The
data on the loading and displacement stages of the experimental results were used as input data and
target data in this analysis. Previous researchers concluded that Artificial Neural Networks (ANN)
can be an alternative in calculating displacement in reinforced concrete beams. Several researchers
have used the ANN method for many structural engineering studies, such as predicting the
compressive strength of concrete [34], axial strength of composite columns [35], and determination
of RC building displacement [36]. Kaczmarek and Szymanska (2016) [37] concluded that the results
of calculating displacement in reinforced concrete using ANN proved to be very effective. Abd et al.
(2015) [38] concluded that the ANN method is also very good for predicting displacement in
concrete beams with a very strong correlation level of 97.27% to the test data. Tuan Ya et al. (2019)
[39] used the ANN method to predict displacement in cantilever beams and concluded that the
output was very accurate.

The ANN method is currently very popular with researchers in predicting and evaluating the
behavior of structures in the field of civil engineering. This is because the ANN method has an
advantage in the nonlinear correlation between the input variables presented. Khademi et al. (2017)
[40] predicts the compressive strength of concrete at 28 days of age by considering the experimental
results, three different models of multiple linear regression (MLR), artificial neural networks (ANN),
and adaptive neuro-fuzzy inference system (ANFIS). The results of his research concluded that the
ANN and ANFIS models can predict the 28-day concrete compressive strength more accurately and
the ANN model can perform better than the ANFIS model in terms of R2. The ANN and ANFIS
models are preferred because the nonlinear correlation between the input variables presented is better.
The ANN and ANFIS models have higher accuracy requirements than the multiple linear regression
(MLR) model. The accuracy of the prediction is very much dependent on the number of input
variables. The greater the number of input parameters, the more accurate the results of the predictor
model will be.

Xuan Li et al. (2019) [41] predict the service life of corroded concrete sewer pipes using three
data-driven models, namely multiple linear regression (MLR), artificial neural networks (ANN), and
adaptive neuro-fuzzy inference system (ANFIS). The one conclusion suggests that the ANN and
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ANFIS models perform better than the MLR models for corrosion prediction, with or without
considering the interactions between environmental factors.

The ANN data is divided into three different subsets [40], namely (1) Training: at this stage, the
subset is trained and studied as occurs in the human brain, where the number of epochs is repeated
until an acceptable model accuracy is obtained; (2) Validation: at this stage, the subset shows how well
the model is trained, and estimates model properties such as misclassification, mean error for
numerical predictors; and (3) Test: at this stage, the subset verifies the performance of the training
subset built into the ANN model.

This paper uses even load input data, while the target data is the displacement of the laboratory
test results. The distribution of the ANN model data composition consists of training 70%, validation
15%, and testing 15%. ANN architecture on a rectangular beam is shown in Figure 5. The process of
implementing input data in the ANN model architecture consists of (1) Input layer, consisting of 1
neuron, namely displacement data variable of experimental results; (2) Hidden layer, consisting of 10
neurons. At this stage, the input layer will forward the data to the hidden layer or the output layer
through a set of weights. This weight is a link from each neuron to other neurons in the next layer
which will help adjust the ANN structure to the given displacement data pattern using learning. In the
learning process, the weights will be updated continuously until one of the numbers of iterations,
errors, and processing time has been reached. This is done to adjust the ANN structure to the desired
pattern based on certain problems that will be solved using ANN. Weight is known as the
independent parameter. During the training process, the weights will be modified to improve the
accuracy of the results. The third layer is (3) Output layer, consisting of 1 neuron which is the expected
output target, error, and weight. Error is the error rate of the displacement data node of the process
carried out, while weight is the weight of the displacement data node with a value ranging between -1
and 1. Then the displacement data resulting from the training process is processed into a graphic
image of the load vs. displacement relationship.

Imput layer :>
(1 Neuron)

Hidden layer

B =@ @ O O
Output layer
i

Figure 5. Schematic of Artificial Neural Networks (ANN) model architecture for BRC beam and SRC
beam.

3. Results

3.1. Experimental

Table 5 shows the results of theoretical calculations and experiments for BRC and SRC beams.
From the theoretical calculation, the BRC beam has an initial crack load of 6.87 kN and an SRC beam
of 6.51 kN. The laboratory test results of the BRC beam experienced an initial crack at a load of 7.69
kN and an SRC beam had an initial crack at a load of 10 kN. The average ultimate load of the BRC
beam occurs at a load of 31.31 kN or 97.27% of the theoretical collapse load of 32.19 kN. This shows
that with the correct treatment of bamboo reinforcement, the BRC beam can reach load capacity
according to the results of the theoretical calculations. As is known, the researchers concluded that
the ultimate load of BRC beams is very low when compared to the theoretical calculations. Dewi et
al. (2017) [42] concluded that the bending capacity of bamboo reinforced concrete beams only
reaches 56% of its capacity if the tensile strength of bamboo is full. Nathan (2014) [43] concluded that
the flexural capacity of reinforced concrete beams only reaches 29% to 39% of the beam capacity
steel-reinforced concrete with the same width and reinforcement dimensions. Khare (2005) [44]
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concluded that the flexural capacity of reinforced concrete beams is only 35% of steel-reinforced
concrete beams at the same strength level.

SRC beams reach a collapse load of 24 kN or almost approaching the theoretical collapse load of
24.12 kN. This shows that the adhesion strength of steel-reinforcement with concrete is higher.
Figures 6 and 7 show that the relationship of the load vs. displacement of the BRC beam and the SRC
beam is different. The SRC beam shows the regions of the elastic limit, elastoplastic limit, and plastic
limit. Meanwhile, the BRC beam only shows the plastic limit point or the ultimate load point. This
shows that the behavior of reinforced concrete beams is very much determined by the properties
and characteristics of the materials used.

P =-0.1418A2 - 4.2539A + 0.5899
R?=0.9769

== BRC Beam - Exp

Load, P (kN)

Displacement, A (mm)

Figure 6. The relationship of load vs. displacement of BRC beam of experimental results.

40
35
30

Plastic limit

25 1%

20 _Elastoplastic limit

15

Load, P (kN)

10 = SRC Beam - Exp

Elastic limit

-2 -4 -6 -8 -10 -12 -14 -16
Displacement, A (mm)

Figure 7. The relationship of load vs. displacement of SRC beam of experimental results.

Mechanical properties and characteristics of steel and bamboo materials are the dominant
factors in the behavior model of the load and displacement relationship [6]. The difference between
the stress and strain relationship patterns of bamboo and steel is in the position of the melting point
and the fracture stress. Steel material shows a clear melting point, while bamboo reinforcement does
not show a clear melting point. However, after the fracture stress, the relationship pattern of the
stress-strain relationship tends to return to zero. This shows that bamboo has good elastic properties

[7].

Table 5. Results of theoretical calculations and experimental for the load capacity of BRC beams and

SRC beams.
Theoret}cal Flexural Test Results
Calculations
Specime  Sample First First
ns no Ultimate Failure Displacement
Crack Crack . Per/Puit
Load Load, Pur at Failure
Load (kN) Load, (KN) (mm) (%)
(kN) Per (kN)

(a) BRC-1 1 6.90 32.20 8.50 31.50 10.92 26.98
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2 8.00 29.00 11.90 27.59

(b) 3 7.00 31.00 13.02 22.58
BRC-2 4 7.50 33.00 12.18 22.73
() BRC:3 5 8.00 33.50 14.69 23.88
6 7.50 33.00 9.32 22.73

(d) 7 7.50 29.50 7.61 25.42
BRC-4 8 7.50 30.00 10.69 25.00
Average: 7.69 31.31 24.61

(e) SRC 9 6.50 24.20 10.00 24.00 6.33 41.57

3.2. Validation with the ANN Method

The load vs. displacement relationship data from the experimental results is the basis used for
the train and the network. Neural networks are designed by determining their structure
experimentally. The data that trains the artificial neural network is the input, and the ability to
reproduce the training pattern is tested. Convergence analysis was carried out to determine the
optimal number of neurons in the hidden layer of ANN. Excessive neurons reduce the
computational performance of ANN, whereas a lack of neurons causes difficulties in characterizing
the input-output relationship. As suggested by Caudill and Mishra et al. (2019) [45], the upper limit
of the number of neurons in the hidden layer is twice the number of inputs plus 1. After the number
of neurons in the hidden layer is reached, the MSE, RMSE, and R? observations are stopped and no
increase is assumed significant. The artificial neural network architecture used in this paper: IHO:
1-10-1 [Input-Hidden-Output] means that this artificial neural network consists of 1 input neuron,
one hidden layer with 10 neurons, and 1 output neuron (predictive values of the load vs.
displacement relationship).

Table 6 presents the performance results of ANN architecture for ten simulations. The process
which has the lowest MSE is selected for comparison with experimental data. Figures 8-12 illustrate
the prediction of the load vs. displacement of the BRC and SRC beams obtained when using the
ANN model after training and when using the data obtained experimentally for training data,
validation data, test data, and all data. Figures 8-12 shows the correlation between the value of the
BRC beam and the SRC beam relationship obtained in the laboratory and the load vs. displacement
values obtained using ANN analysis. The convergence of the position of the point with the line y = x
indicates the identification of values with very high accuracy. The correlation value of laboratory
data using ANN shows an average value of R Square of 0.999. This indicates that the two results are
consistent. The prediction results of the ANN method show that the percentage of errors is very
small, with a maximum error of 0.26%. Overall, the comparison of experimental data with the
predicted results of the ANN method shows an error of not more than 1%. From the data from the
two analyses and the load vs. displacement relationship pattern, it can be concluded that the
stiffness of the BRC beam has similarities.

Table 6. The validation results of the relationship load vs. displacement using the ANN method.

Specimens The Correlation Coefficient (R) Mean Square Error (MSE)
Training Validation Testing Training Validation Testing
BRC-1 1.0000 0.9999 0.9997 0.0004 0.0011 0.0110
BRC-2 0.9999 0.9997 0.9999 0.0038 0.0276 0.0048
BRC-3 0.9998 0.9999 0.9993 0.0034 0.0075 0.0152
BRC-4 1.0000 1.0000 1.0000 0.0001 0.0009 0.0010

SRC 1.0000 1.0000 0.9997 0.0001 0.0027 0.0006
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Figure 8. Prediction of the load vs. displacement relationship using ANN and using experimental

observation for the training, validation, testing, and all datasets (BRC-1).
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Figure 9. Prediction of the load vs. displacement relationship using ANN and using experimental

observation for the training, validation, testing, and all datasets (BRC-2).
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Figure 11. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (BRC-4).
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Figure 12. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (SRC).

The data merger of ANN analysis results from each BRC beam specimen into a load vs.
displacement relationship. The merger is done to determine the suitability of the load vs.
displacement relationship model through the R? parameter. From the results of the regression
analysis, it is found that R? = 0.9771, or almost close to 1. This shows that the model has high
suitability, as shown in Figure 13. Figure 13 illustrates the load vs. displacement relationship for all
BRC beam typologies from ANN analysis.
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Figure 13. The relationship of load vs. displacement of BRC beam of ANN results.

3.3. Validation with the Finite Element Method

Validation of the relationship of load vs. displacement with the finite element method is done
by inputting the geometry of the cross-section, load data, modulus of elasticity (E) per layer, and
Poisson’s ratio (v). The load vs. displacement relationship diagram of the experimental results as
shown in Figures 6 and 7 is used as a guide for the stages of the analysis process using the finite
element method. And the cross-sectional stiffness input via the per-layer modulus of elasticity (E) is
shown in Tables 7 and 8. The analysis execution using the finite element method uses the Fortran
PowerStation 4.0 program. The process of calculating displacement and stress with the Fortran
PowerStation 4.0 program is carried out in stages according to the loading and stiffness stages per
layer from the beam’s elastic condition, initial crack, elastoplastic, and plastic conditions until the
beam collapses. The displacement data resulting from the finite element method is processed into a
load vs. displacement relationship as shown in Figure 14. h"he displacement of the load ultimate is
shown in Figure 15 for BRC beams and Figure 16 for SRC beams‘. The stress contours at the time of
the load collapse are shown in Figure 17 for BRC beams and Figure 18 for SRC beams.

2

15 ——— BRCBeam - FEM
~———— SRCBeam - FEM

Load, P (kN)

10 4 -4~

0 2 4 6 8 0 12 4 6
Displacement, A (mm)

Figure 14. The relationship of load vs. displacement of BRC beam of finite element method (FEM)
results.
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Figure 17. The stress contour of X-direction of BRC beam.
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Table 7. The modulus of elasticity for each layer of the BRC beam in the non-linear phase.

17 of 27

Modulus of Elasticity (E) of the BRC Beam

N]:::Zl:)rer Elastic Condition Plastic Conditions with Gradual Loads
0-8.5 kN 9 kN 11 kN 13 kN 15 kN 17 kN 19 kN 21 kN 23 kN 25 kN 27 kN 29 kN 31 kN 33 kN
4ﬂl1a;neiSh 26851.29 16,110.77 16,110.77  16,110.77 16,110.77 16,110.77  16,110.77 16,110.77 16,110.77 16,110.77  12,083.08 11,277.54  11,277.54  8592.41
St?ar}liSh 26851.29 16,110.77 16,110.77 16,110.77  16,110.77 16,110.77 16,110.77  16,110.77 16,110.77 1208.31 10,740.52 9397.95 9397.95 7518.36
2“;; rreliSh 23140.89 13,884.53 11,570.44 11,570.44 11,570.44 11,570.44 10,413.40 10,413.40 10,413.40 10,413.40 6942.27 6942.27 6942.27 5553.81
y
Ist mesh 26851.29 13,425.65 11,814.57  10,203.49 8323.90 6712.82 5101.75 5101.75 5101.75 3759.18 3222.16 2685.13 1611.08 1329.14

layer
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Table 8. The modulus of elasticity for each layer of the SRC beam in the non-linear phase.
Modulus of Elasticity (E) of the SRC Beam
Layer Number Elastic Condition Plastic Conditions with Gradual Loads
0-9 kN 10 kN 11 kN 12 kN 13 kN 15 kN 17 kN 19 KN 21 KN 23 kN 24 kN
4th mesh layer 26,851.29 26,851.29 20,13847 20,138.47 20,138.47 20,138.47 20,138.47 18,79590 18,79590 13,425.65 11,411.80
3th mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 18,79590 18,79590 18,795.90 17,453.34 17,453.34 13,425.65 11,411.80
2nd mesh layer 43,209.32 43,209.32 30,586.93 30,586.93 28,547.80 28,547.80 26,508.67 26,508.67 24,469.54 20,391,29 17,332.60
1st mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 18,795.90 18,795.90 17,453.34 16,110.77 14,768.21 13,425.65 12,083.08
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4. Discussion

Merging is carried out on the load vs. displacement relationship diagram from the experimental
results, ANN analysis, and finite element method (FEM) analysis. Figure 19 shows the combined
load vs. displacement diagram of the ANN analysis results with the experimental results. Figure 19
shows that the load vs. displacement relationship diagram the two analyses results are very
coincided or show high suitability. However, at a load of approximately 90% of the collapse load, the
load vs. displacement relationship diagram shows different behavior. Figure 20 shows the combined
load vs. displacement diagram of the experimental results, ANN analysis, and the results of the
finite element method analysis. Figure 19 shows that the artificial neural networks (ANN) model has
a higher R? value when compared to the R? value of the multiple linear regression model (MLR).
ANN analysis has better predictive accuracy. This is the same as the conclusion of 2 researchers,
namely Khademi et al. (2017) [40], who concluded that the ANN model has higher accuracy than the
multiple linear regression (MLR) model, and Xuan Li et al. (2019) [41], who concluded that the ANN
model performs better than the MLR models with or without considering the interactions between
factors. The accuracy of the prediction is very much dependent on the number of input variables.
The greater the number of input parameters, the more accurate the results of the predicted model.

The diagram of the relationship between load and displacement of the BRC beam from FEM
analysis and experimental results shows the difference in elastic conditions or until the initial crack
occurs. The experimental results showed negative differences with the results of the FEM analysis.
This shows the influence of the nature and characteristics of bamboo. The parts of bamboo stems
have a non-uniform or uncertain modulus of elasticity. Tensile strength and modulus of elasticity of
bamboo tested in the laboratory are sometimes different from bamboo which is used as beam
reinforcement. As is known, bamboo trees from base to tip have different tensile strength and fiber
density. tMeanwhile, the load vs. displacement diagram of the SRC beam experiment results has a
positive difference with the results of the FEM analysis when the elastic condition occurs or until the
initial crack occurs]. Positive differences can be ignored, in the sense that the quality of the steel used
is better than the quality of steel tested in the laboratory. However, in this study, the analysis of
stiffness reduction in BRC and SRC beams was focused after the beam experienced an initial crack or
non-linear phase.
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Figure 19. The combined of the load vs. displacement relationship of BRC beam of the experimental
results and ANN analysis.
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Figure 20 shows that inelastic conditions there is a difference in stiffness between the two types
of beams. The stiffness of bamboo reinforced concrete beams (BRC) is lower than the stiffness of
steel-reinforced concrete beams (SRC). This difference occurs not due to reduced cross-section
inertia or Iy of cross-sectional reduction, but due to the nature of the material used. This is because
the BRC beam uses bamboo reinforcing material, which has high elastic and resilience properties.
BRC beams with bamboo reinforcement will be able to accept high impact loads without causing
over stress at the elastic limit, even though displacement has occurred. This indicates that the energy
absorbed during loading is stored and released if the material is not loaded. Meanwhile, the SRC
beam uses steel material that has high stiffness and toughness, so that the SRC beam in the service
load range or elastic conditions does not experience excessive displacement or deformation. Beams
that use materials with high stiffness and toughness will be able to withstand high impact loads or
shock loads. If the SRC beam gets an impact load, then some of the energy is absorbed and some of
the energy is transferred.

In the non-linear phase or after initial cracking, the beam stiffness changes from the
full-sectional flexural stiffness, Eclg, to the effective bending stiffness, Ecls. In the non-linear phase,
the stiffness of the beam section continues to decrease with increasing loads, moments, and cracks.
The area of the beam section continues to decrease with increasing cracks and automatically causes
the beam section stiffness (Eclg) to decrease. As shown in Table 6 and Figure 21, the stiffness of the
BRC beam decreases after the initial cracking occurs as the increasing loading stage is applied. The
increase in load causes the flexural moment to increase, the displacement increases, and the crack
propagation continues to spread towards the compressed block of the beam cross-section. The crack
propagation from 1st mesh layer to the 2nd mesh layer onwards runs linearly with reduced
cross-sectional stiffness from the lower fiber of the cross-section tensile block to the upper fiber of the
compressive block of the beam cross-section. The increase in crack propagation towards the
compressive block of cross-section causes the neutral line to change. Chunyu Fu et al. (2018) [13]
concluded that the presence of cracks causes a nonlinear stress distribution along the beam
cross-section, which changes the neutral axis of the cross-section and further affects the stiffness of
the beam. Figure 21 shows that the stiffness of the BRC beam cross-section decreases from the initial
crack until the beam collapses. The stiffness of BRC beams is reduced by 50% after initial cracking to
95% at collapse. The stiffness reduction goes step by step according to the moment (M) applied to
the beam. Sang-Whan Han et al. (2009) [4] revealed that the stiffness reduction factor was
significantly affected by the amount of moment or the applied load, while the stiffness reduction
factor did not differ from the amount of reinforcement. The decrease in the moment of inertia of the
full cross-sectional Ig of the BRC beam ranged from 0.51;-0.05I; for the elastoplastic and plastic
regions. Meanwhile, ACI-318M-14 [5] recommends the stiffness of the beam cross-section for elastic
analysis in the non-linear phase of 0.51;-0.25I;. The difference in the value of the reduction in the
stiffness of the cross-section at collapse correlates with the differences in the properties and
characteristics of the material used as beam reinforcement. Bamboo reinforced concrete beams (BRC)
exhibit high displacement behavior, but once the collapse load is reached and gradually released,
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displacement tends to return to zero. It is linear with its elastic properties and the stress vs. strain
relationship behavior of bamboo.
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Figure 21. Decreased stiffness of BRC beam cross-section in the span middle.

Table 7 and Figure 22 show a decrease in stiffness or a decrease in the moment of inertia of the
SRC beam cross-section. Stiffness decreases after initial cracking as the applied load increases.
Figure 22 shows that the cross-sectional stiffness of the SRC beam decreases from the initial crack
until the beam collapses. The stiffness of the SRC beam was reduced by 25% after initial cracking to
60% at collapse. The decrease in the moment of inertia full cross-section () for SRC beams ranged
from 0.751,-0.40I for the elastoplastic and plastic regions. Meanwhile, ACI-318M-14 [5] recommends
the cross-sectional stiffness of reinforced concrete beams for elastic analysis in the non-linear phase
of 0.51;-0.25I;. The difference in the value of the reduction in the cross-sectional stiffness of the SRC
beam with the ACI-318M-14 [5] requirements is due to the beam cross-section reinforcement
method, namely the SRC beam in this study using a single reinforcement method. SRC beam with
single reinforcement shows that when the steel reinforcement undergoes second melting and the
moment of inertia of the cross-section is still around 40%, the steel reinforcement is not able to
withstand the tensile stress that occurs so that the neutral line of the cross-section continues to shift
upwards towards the upper fiber of the compression block of the cross-section. Meanwhile, BRC
beams with bamboo reinforcement have good elastic properties, where after the ultimate load is
reached, the large displacement shrinks back to near-zero or the beam returns flat [7], as shown in
the video at the following link: https://g0o.gl/6AVWmP. Although the stiffness or inertia of the BRC
beam cross-section is still around 5%, bamboo reinforcement is still able to withstand the tensile
stress that occurs, as stated by Ghavami (2005) [24] that bamboo has high tensile strength. If we
control with the crack pattern, the crack lines on the BRC beam majority stop below the cross-section
neutral line, while the crack lines on the SRC beam tend to continue to propagate upwards towards
the upper fibers of the compressive block of the beam cross-section, as shown in Figures 23 and 24.
And if we look at Figures 17 and 18, the tensile stress contour of the BRC beam has a wider zone and
spreads to the side when compared to the SRC beam.
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Figures 25 and 26 show the relationship between the stiffness reduction factor (¢x) and the
M:/Mer of the BRC beam and the SRC beam. The stiffness reduction factor (¢x) is the ratio of the
moment of inertia of the effective section (I) divided by the moment of inertia of the cross-section
(Is). The stiffness reduction factor (¢x) is significantly influenced by the applied moment level. The
equation of the beam stiffness reduction factor is related to the ratio between the applied moment
and an initial crack moment or M«/Me. The equation for the stiffness reduction factor is shown in
Equation (5) or Equation (6) for a BRC beam. The stiffness reduction factor equation for the SRC
beam is shown in Equation (7) or Equation (8). Figure 27 shows a comparison of the relationship
between the stiffness reduction factor and the Mas/M.rof the BRC beam and SRC beam. The diagram
of the relationship between the stiffness reduction factor and M«/Mcshows that the SRC beam has a
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smaller stiffness reduction factor than the BRC beam in the non-linear phase. However, the SRC
beam shows a collapse at the moment of inertia of the effective cross-section (I.), which is relatively
still large when compared to BRC beams. BRC beams collapse at the effective cross-section inertia of
about 5%, and SRC beams collapse at the effective section inertia of about 40%. The alternative of
moments of inertia from various sources is shown in Table 9.
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Figure 25. The relationship of the stiffness reduction factor (¢«x) and the Mo/M.r of the BRC beam.
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Figure 26. The relationship of the stiffness reduction factor (¢x) and the M«/Mer of the SRC beam.
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Figure 27. Comparison of the relationship of the stiffness reduction factor (¢«) and the Ms/Mer of the
BRC beam and SRC beam.

Table 9. The alternative value of I for elastic analysis from various sources.

Source and Information Alternative value of I for elastic analysis
ACI-318M-14 [5] 0.251-0.51¢
FEMA 356-2000 [46] 0.5 EI-0.8EIy
New Zealand Code [47] 0.35I;
Paulay and Priestley, 1992 [48] 0.30I,-0.501¢
In this research (singly reinforced beam)
- BRC Beam 0.05I-0.51;
- SRC Beam 0.41.-0.751¢

5. Conclusions

The relationship pattern of load vs. displacement reflects the stiffness pattern of structural
elements. The properties and characteristics of the material in the reinforcing concrete elements have
a dominant influence on the relationship pattern of the load vs. displacement of reinforced concrete
elements. Bamboo reinforced concrete beams (BRC) have a different load vs. displacement
relationship pattern when compared to steel reinforced concrete beams (SRC). BRC beams have
elastic properties and high resilience properties that can accept high impact loads without causing
over stress at the elastic limit, even though displacement has occurred. While SRC beams have high
stiffness and toughness so that SRC beams are not subject to excessive displacement or deformation
at service load ranges or elastic conditions.

Results of the validation of the relationship pattern of the load vs. displacement of the BRC
beams shows that the ANN model has a higher R? value when compared to the R? value of the MLR
model. ANN analysis has a higher prediction accuracy. The accuracy of the prediction depends very
much on the number of input variables. The greater the number of input parameters, the more
accurate the prediction model results.

The cross-sectional stiffness of BRC beams is reduced by 50% after initial cracking and reduced
by 95% at collapse. The cross-sectional stiffness of the SRC beam was reduced by 25% after initial
cracking and reduced by 60% at collapse. The reduction in stiffness is significantly affected by the
amount of applied moment (M.) or the load applied that caused cracks and a reduction in the
moment of inertia of the cross-section.

The initial decrease in cross-sectional stiffness of BRC beams occurs at a load of about 24% of
the ultimate load and BRC beams occur at loads of about 40% ultimate load. BRC beam collapse
occurs when the moment of inertia of the effective cross-section (I) is 5%, while the SRC beam
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collapse occurs when the moment of inertia of the effective cross-section () is 40%. The reduction in
stiffness in the cross-section of the beam in the non-linear phase ranged from 0.5[;-0.05I; for BRC
beams, and 0.751;-0.40I; for SRC beams. ACI-318M-14 standard recommends the cross-sectional
stiffness of reinforced concrete beams for elastic analysis in the non-linear phase of 0.5;-0.25I;.

The SRC beams have a smaller stiffness reduction factor (¢x) than BRC beams in the non-linear
phase. However, the SRC beam shows a collapse at the moment of inertia of the effective
cross-section (L), which is relatively large when compared to BRC beams.
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Abstract: This paper discusses the reduction of the stiffness of bamboo reinforced concrete (BRC)
beams to support the use of bamboo as an environmentally friendly building material. Calculation
of cross-section stiffness in numerical analysis is very important, especially in the non-linear phase.
After the initial crack occurs, the stiffness of the cross-section will decrease with increasing load
and crack propagation. The calculation of the stiffness in the cross-section of the concrete beam in
the non-linear phase is usually approximated by giving a reduction in stiffness. ACI 318-14
provides an alternative, reducing the stiffness of the plastic post-linear beam section through the
moment of inertia (I) of the beam section for elastic analysis between O.SOIXH).ZSIg. This study aims

to predict the value of the reduction in the stiffness of the BRC beam section in the non-linear phase
through the load-displacement relationship of experimental results validated by the Finite Element
Method (FEM) and the Artificial Neural Networks (ANN) method. The experiment used 8 BRC
beams and one steel-reinforced concrete (SRC) beam of singly reinforced with a size of 75 mm ix 150
mm x ‘1100 mm. The beams were tested using a four-point loading method. The analysis results

showed that the value of the stiffness reduction in the beam cross-sectional in the non-linear phase
ranged from 0.5I;—0.05I; for BRC beams, and 0.75I;—0.40I; for SRC beams.

Keywords: stiffness reduction; bamboo reinforced concrete (BRC); finite element method (FEM);
artificial neural networks (ANN)

1. Introduction

The impact of increasing industrial development is that it can cause pollution of air, water, soil,
and noise. The use of industrial building materials such as ceramics, steel, concrete, and other
materials has led to an increase in environmental pollution. The procurement of wood forests or
bamboo forests must be done as a counterweight to environmental pollution. Pandey et al. (2017) [1]
tons of Oz for every cubic meter of growth. The use of environmentally friendly building materials
such as wood and bamboo must be done. Bamboo is a forest product that provides high economic
and ecological value to the community. Bamboo also has enormous potential with promising
prospects [3]. Bamboo is one of the commodities produced by Community Forests. However,
research on the behavior of bamboo as a building material is mandatory, such as research on the
stiffness of bamboo reinforced concrete (BRC) beams.

The stiffness reduction factor is a multiplier to reduce the moment of inertia in gross
cross-sectional, and the gross cross-sectional area remains constant. These factors are conservatively
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enforced by various concrete standards to account for the loss of stiffness in the concrete
cross-section due to the cracking of the concrete. The stiffness of the beam cross-section in the elastic
phase or linear phase indicates the full section flexural stiffness, Ecl;, whereas in the non-linear phase
or after the initial crack, the gross cross-section bending stiffness is reduced to the effective flexural
stiffness, Ecdes. The stiffness reduction factor is significantly influenced by the amount of moment or
the applied load, while the stiffness reduction factor does not differ from the amount of
reinforcement [4]. ACI 318M-14 [5] shows that the gross section flexural stiffness, Ecl, is reduced to
obtain the effective flexural stiffness, Ecl,, which causes cracking and other softening effects. As the
moment in the concrete section increases, the flexural stiffness will be reduced due to the cracks that
continue to propagate and spread. ACI 318M-14 [5] provides stiffness reduction limits for elastic
analysis with a moment of inertia limits between 0.25I;-0.5I; for concrete beams. The equation for the
moment of inertia effective (I) is determined in ACI 318-05 [5] Section 9.5.2.3L as shown in Equation

@)
3 3

e e
where I; = moment of inertia of the gross concrete section and I- = moment of inertia of the crack
section including the reinforcement. The moment of inertial effective (I) as shown in Equation (1)
will decrease as the moment that occurs, M. Calculation of the moment of inertia of the crack
cross-section, I at Equation (1) must pay attention to the number of reinforcement installed.
However, the amount of reinforcement is not determined at the initial design stage.

The process of stiffness reduction in the beam section starts from the “no crack” and “cracked”
conditions in the section. In the service load condition or the elastic condition, the stiffness of the
beam section is in full condition, even though the moment due to the load continues to increase. In
the elastic condition, the moment that occurs (M) is still below the moment of cracking (Me), or the
tensile stress of the concrete is still below the modulus of rupture of the concrete beam cross-section,
fr. In the elastic conditions, the difference in stiffness between two different types of beams usually
occurs not due to reduced inertia of the cross-section, but due to the properties of the materials used.
For example, the stiffness of bamboo reinforced concrete beams is different from the stiffness of
steel-reinforced concrete (SRC) beams. In the elastic conditions, the stiffness of BRC beams is lower
than the stiffness of SRC beams [6-8]. This is because BRC beams use bamboo reinforcing materials
which have elastic properties and high resilience properties. BRC beams with bamboo reinforcement
will be able to accept high impact loads without causing stress over the elastic limit, even though
displacement has occurred. This indicates that the energy absorbed during loading is stored and
released if the material is not loaded.

Meanwhile, the SRC beam uses steel material that has high stiffness and toughness, so that the
SRC beam in the service load range or elastic condition does not experience displacement or
excessive deformation. Beams that use materials with high stiffness and toughness will be able to
withstand high impact loads or shock loads. If the SRC beam gets an impact load, then some of the
energy is absorbed and some of the energy is transferred.

Research on modeling and stiffness reduction has been carried out by many researchers. Kai
Zhang et al. (2020) [9] investigated the effect of electrochemical rehabilitation (ER) techniques on the
fatigue stiffness of RC beams. The results of his research indicated that electrochemical rehabilitation
(ER) exacerbated bond breakage, thereby reducing the flexural stiffness of RC beams. Salam
Al-Sabah et al. [10] discuss the use of negative stiffness in the failure analysis of concrete beams. In
his research, Salman Al-Sabah et al. concluded that the effective and simple one-dimensional
stress-strain behavior of concrete was used to study concrete blocks with proportional loading, the
only source of non-linearity to consider cracks in concrete. Hong-Song Hu et al. (2016) [11]
investigated the effectiveness of square KFSﬂ rod stiffness, and the results proposed an equation for
the effective stiffness of square CFST rods. Mubhtar et al. [7] tested the flexural of BRC beams and
SRC beams, the results showed that the stiffness decreased after the initial cracking. The average
stiffness of the BRC beam decreased from 26,324.76 MPa before cracking to 6581.20 MPa after

{ Comment [M7]: Ok, just delete it. ]

Comment [CH8]: CFST (Concrete
filled steel tubular)




Forests 2020, 11, x FOR PEER REVIEW 30f27

collapse [7], while the average value of SRC beam stiffness decreased from 30,334.11 MPa before
cracking to 16873.35 MPa after the collapse.

K.A. Patela et al. (2014) [12], in their paper, provide an explicit expression for the effective
moment of inertia by considering cracks for reinforced concrete beams (RC) with uniformly
distributed loads. The proposed explicit expressions can be used to predict short-run displacement
in-service load. The sensitivity analysis shows a substantial dependence of the effective moment of
inertia on the selected input parameter. Displacement is an important parameter for examining the
serviceability criteria of structures. The short-term displacement is generally calculated using the
effective moment of inertia across the span at the service load [12]. Chunyu Fu (2018) [13] presents a
method of estimating the stiffness of cracked beams based on the stress distribution. In his
conclusion, he said that the presence of cracks causes a nonlinear stress distribution along the beam
section, which changes the neutral axis of the cross-section and further affects the stiffness of the
beam. J.R. Pique (2008) [14] concluded that when the design is controlled by the minimum
reinforcement, especially in the beam, special attention should be paid to the calculation of the real
period and maximum distortion. The effective stiffness of the beam with the minimum steel ratio is
much lower than that obtained by the proposed reduction factor. As a result, the actual period and
actual maximum distortion can be greater. Akmaluddin et al. (2012) [15] concluded that the moment
of crack and the value of the moment of inertia of the crack was significantly affected by the presence
of bamboo reinforcement in the beam. The experimental results show that the crack moment varies
from 0.3 to 0.7 from the ultimate moment. The experimental and theoretical crack moment ratio
varies from 0.90 to 1.42. {lker Kalkan (2013) and [16] concluded that the effective moment of inertia
and load-displacement curve analysis is highly dependent on the crack moment used in the
expression analysis of the effective moment of inertia. Therefore, the experimental cracking moment
of the beam should be used in the calculation of the effective moment of inertia for a more accurate
comparison of the different analytical methods. Chunyu Fu et al. (2020) [17] concluded that cracking
of concrete causes a gradual change in the distribution of strain along with the cross-sectional height
of reinforced concrete beams, which in turn affects the instantaneous stiffness. The instantaneous
stiffness proved to be highly dependent on the number and depth of cracks. This dependence can be
accurately reflected by the method proposed by simulating a gradual change in the concrete strain
distribution. Xiuling Feng et al. (2013) [18] examines the reduction factor of flexural stiffness in
reinforced concrete columns with an equiaxial cross-section and suggests that the reduction factor is
proposed by considering the nonlinear characteristics of the material and its geometric nonlinearity.

The difference in the nonlinear characteristics of the material used in the BRC beam and the
SRC beam greatly determines the flexural behavior of the beam. Bamboo reinforced concrete beams
have low stiffness and tend to be large displacement. The solution to increasing the stiffness of BRC
beams is to use shear reinforcement and the principle of confined concrete [7,19]. In the linear elastic
condition, the BRC beam has shown a large displacement, but when the ultimate load is reached and
the loading is released gradually, the displacement tends to return to zero. In this study, the
reduction of stiffness in the non-linear phase was analyzed through the load vs. displacements that
were validated using the finite element method (FEM) and the Artificial Neural Networks (ANN)
method. It is suspected that the reduction of the cross-sectional stiffness of the BRC beam is different
from the reduction in the stiffness of the SRC beam section. The parameter of the moment of inertia
of the cross-section becomes a benchmark in determining the reduction of stiffness according to
ACI-318M-14 [5].

2. Materials and Methods

2.1. Treatment of Materials

In this study, the treatment of bamboo material as concrete reinforcement is an important thing
to do. The bamboo used is the bamboo “petung” (Dendrocalamus asper) which is between three and
five years old [20-22]. The part of bamboo that is used as reinforcing of concrete is 6-7 m long from
the base of the bamboo stem [23]. Bamboo is cut according to the size of the bamboo reinforcement to
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be used, which is 15 x 15 mm?2. Then, bamboo is soaked for +20-30 days [21]. After soaking, bamboo
is dried in free air until it has an absorption level of + 12%.

Application of adhesive or waterproof coating [24,25] is done after the bamboo reinforcement is
cleaned and trimmed according to the planned size. The application of a waterproof layer is carried
out to prevent the hydrolysis process between bamboo and concrete. Sand sprinkling on bamboo
reinforcement is done when the adhesive is half dry to make it stronger [21,26]. The application of
sand aims to increase the adhesion strength of bamboo reinforcement to concrete.

An installation of a hose-clamp at both ends of the bamboo reinforcement is done to match the
concept of hooks or bends in steel reinforcement. An installation of the hose-clamp only on tensile
reinforcement is done to increase bond-stress between bamboo reinforcement and concrete [27,28].
The tensile force on the bamboo reinforcement will be distributed to the concrete through the
hose-clamp, which functions as a shear connector. Bamboo treatment is shown in Figure 1.

% Sand

Sikadur®-752

9 Bamboo reinforcement
with Sikadur®-752

Bamboo reinforcement
with Sikadur®-752
coating and sand

Bamboo reinforcement
with hose-clamp

Figure 1. The materials and treatments of bamboo reinforcement.

2.2. Materials

The concrete mixture used in this study is a normal concrete mixture consisting of Portland
Pozzolana Cement (PPC), sand, coarse aggregate, and water with a proportion of 1:1.8:2.82:0.52.
Sand and gravel come from the Jember area of Indonesia. The cylindrical specimen measures 150
mm in diameter and 300 mm in height. The cylindrical specimens were press-tested using a
Universal Testing Machine (UTM) with a capacity of 2000 kN after the concrete was 28 days old. The
procedure for the cylinder specimen compressive test follows ASTM C 39 [29]. The average
compressive strength of cylindrical concrete is 31.31 MPa with an average weight of 125.21 N. The
properties and characteristics of the concrete are shown in Table 1.

Table 1. Material properties of reinforcing and concrete.

Bar

Type . Modulus of . , Tensile Compressive

and Dla(nr:;tsr, d Elasticity (E), I;:;;ZOE/)S Strength, fy  Strength, [
Concret (MPa) (MPa) (MPa)

e

Bamboo  [n/15x 15 17,235.74 0.20 126.68 -

Steel ¢8 207,735.92 0.25 392.28 -
Cor:ret - 26,324.79 0.30 - 31.31

The tensile test of bamboo reinforcement produces the average tensile stress of 126.68 N/mm?
with an average strain of 0.0074. The modulus of elasticity of bamboo reinforcement was calculated
using the formula E = o/¢ and obtained 17,235.74 MPa. The modulus of elasticity of steel is obtained
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by 207,735.92 MPa. The properties and characteristics of bamboo and steel reinforcement are shown

in Table 1.

The adhesive layer or waterproof coating used was Sikadur®-752 produced by PT. SIKA
Indonesia [30]. The specifications for the adhesive sikadur®-752 are shown in Table 2. Installation of

hose-clamp on bamboo reinforcement is done when the waterproof layer is half dry [21]. The

diameter of the hose-clamp used is %" made in Taiwan.

Table 2. The specification of Sikadur®-752 [30].

Components Properties
Color Yellowish
Density

Approx. 1.08 kg/L

Mix comparison

(weight/volume) zl
Pot life at +30 °C 35 min
Compressive 62 MPa at 7 days (ASTM D-695)
strength 64 MPa at 28 days
Tensile strength 40 MPa at 28 days (ASTM D-790)
Tensile Adhesion 2 MPa (Concrete failure, over mechanically prepared concrete surface)
Strength
Coefficient of
— o [} 6 [}
Thermal Expansion 20°Cto+407C 89 1& h:)er <
Modu.lu.s of 1060 MPa
elasticity

2.3 Experimental Procedure

The test object consisted of 9 beams with a size of 75 mm x 150 mm x 1100 mm, consisting of 8
bamboo reinforced concrete beams (BRC) and one steel-reinforced concrete beam (SRC). Bamboo
reinforcement is installed as tensile reinforcement with a reinforcement area of 450 mm?2. The steel

reinforcement used has a diameter of 8 mm with an area of As = 100.48 mm?. The beam geometry and
reinforcement detail of the BRC and SRC beams are shown in Figure 2.

%P

P
%P /__ Bamboo reinforcement 2 o 15x15 mm*
Strain Gaugerl/ \L A 150 mm
} — m

LVDT%* é TSmm
T S W B 59 |
[ I 1 H
‘% L=1000 mm %‘ BRC Beam
P
%R %P
Strain Gauge Steel bars 2@ 8
150 nm /\/ \A eel bars mm .
. S __25mm
ES “’DTﬁﬁ 4L 75er ~
}5? AL } R 4L ?0} pa
‘% L=1000 mm %‘ SRC Beam

Figure 2. Reinforcement details and beam test settings.

The beam flexural test method was carried out using the four-point method [31]. The test
arrangement and load position are shown in Figure 2. Strain gauges are installed on the bamboo
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reinforcement at a distance of %L from the support of the beam. Beam displacement measures use
Linear Variable Displacement Transducers (LVDT) with a distance of %L from the beam support.

The loading stages from zero to the collapse of the beam are used as a hydraulic jack and a load
cell connected to a load indicator tool. The load reading on the load indicator is used as a hydraulic
jack pump controller, displacement reading, and strain reading according to the planned loading
stage. However, when the test object reaches its ultimate load, the displacement reading controls the
strain and load reading, while the pumping of the hydraulic jack continues slowly according to the
command of the displacement reader. The failure pattern was observed and identified by the cracks
that occurred, from the time of the initial crack until the beam collapsed.

2.4. Validation of Numerical Methods

Walidation of experimental data was found by using the Finite Element Method (FEM) and
Artificial Neural Networks (ANN). TThe relationship between load vs. displacement experiment
results was validated by using the finite element method. The procedure used is inputting material
data and loading stages to determine the behavior of the load vs. displacement of BRC beams and
SRC beams. The data input for the loading stages is carried out following the loading stages from
laboratory experimental data. The numerical method used is the finite element method, using the
Fortran PowerStation 4.0 program [32]. rThe theoretical analysis is used to calculate the load causing
the initial crack using elastic theory (linear analysis) with cross-section transformation. [For linear
analysis, the input material data is the modulus of elasticity (E) and Poisson’s ratio (v). The
calculation of the modulus of elasticity of the composites (Ewomy) is shown in Tables 3 and 4. The
non-linear phase is approximated by decreasing the concrete strength from 0.25 to 0.5 for the
calculation of the effective stiffness in the plastic plane [5]. In the analysis of the finite element
constitutive relationship, the problem-solving method uses the plane-stress theory. Triangular
elements are used to model plane-stress elements with a bidirectional primary displacement at each
point so that the element has six degrees of freedom. The discretization of the beam plane is carried
out using the triangular elements shown in Figure 3 for BRC beams and Figure 4 for SRC beams.

l/xp *‘AP
150 mm4— (53 D O} (50) D) (53) (59) (50)- 1 (52) (s3) 65
<> < <z> <z > 2 23 <e > <z <z <= 2 4™ mesh layer
0 o <> <z > T > Cu>| AL <z <> <z >
mm
S _— <T> <2/ |<e <& <& > <z <o > 3" mesh layer
A4 > <z> <= <Zi, o> <® > <a> fe=dy/a
aomm | @ LWL A TN AT LT L R g oW
o (SR S e N R K e | S R e K S s [ e [ [ 2 T e mesh layer
< > <> < = i = = <> <z > <> z
<= > <> = e i <>l <l
omm 1 2 3 4 5 B 7 B 9 ®; ®; 12 13
0mm 50 mm 150 mm 250 mm 380 mm 480 mm 550 mm 620 mm 720 mm 850 mm 950 mm

Information:

i‘ = Normal concrete = Bamboo reinforcement

Figure 3. Discretization of the triangular element on the bamboo reinforced concrete (BRC) beam.

150 mm-

100 mm

33mm

25mm

omm mm 150 mm 250 mm 380 mm 480 mm 550 mm 620 mm 720 mm 850 mm 950 mm

Information:

i‘ = Normal concrete W = Steel reinforcement

Figure 4. Discretization of the triangular element on the steel-reinforced concrete (SRC) beam.
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Table 3. Elasticity Modulus of Composite of BRC beam.

Compressive . . . . ..
Layer P v Dimensions of Modulus of Elasticity of the Elasticity Modulus
Number Strength of er Layer Material (E) of Composite (Ecomp)
Concrete, f- P Y 13 comp
Concrete, Ec Bamboo, E»
Mpa b (mm) h (mm) (MPa) (MPa) MPa
4th mesh 31.31 75 50 26,851.29 0 26,851.29
layer
3rd mesh 31.31 75 60 26,851.29 0 26,851.29
layer
2nd mesh 31.31 75 15 26,851.29 1723.57 23,140.89
layer
1st mesh layer 31.31 75 25 26,851.29 0 26,851.29
Table 4. Elasticity Modulus of Composite of SRC beam
Compressive  Dimensions of =~ Modulus of Elasticity of the  Elasticity Modulus
Layer . .
Strength of per Layer Material (E) of Composite (Ecomp)
Number ,
Concrete, f'
Concrete, E. Steel, Es
h ¢ ¢ MP
Mpa b (mm) (mm) (MPa) (MPa) a
4th mesh layer 31.31 5 50 26,851.29 0 26,851.29
3rd mesh layer 31.31 75 67 26,851.29 0 26,851.29
2nd mesh 31.31 75 8 26,851.29 207,735.92 43,209.32
layer
1st mesh layer 31.31 75 25 26,851.29 0 26,851.29

The modulus of elasticity (E) for each layer is calculated according to the condition of the
material. Layers of concrete and bamboo reinforcement are calculated using the following Equation.
(2) [33]-

E.=EV, +E.V, )
where E. = the equivalent elasticity modulus of BRC beam, E» = elastic modulus of bamboo
reinforcement, E. = modulus of elasticity of concrete, Vi = relative volume of bamboo reinforcement in

calculated layers, and V. = relative volume of concrete in calculated layers. The stress-strain
relationship for plane-stress problems has the shape of an equation such as Equation (3).

o, £ 1 v 0 | &
o t=——|v 1 0 €
v LA )
Ty 0 0 —/||l7y
2

where E is the modulus of elasticity and v is the Poisson’s ratio. And the principal stresses in two
dimensions are calculated by Equation (4).

o, +o,
012 =
2

The simulation and steps for preparing a FEM analysis with the Fortran PowerStation 4.0
program [32] are summarized as follows:

Step 1: Discretization of BRC and SRC beam planes with the discretization of triangular elements, the
numbering of triangular elements, and the numbering of nodal points as shown in Figures 3(d) and
Figure 4.

Step 2: Calculation and collection of geometry and material data, such as the modulus of elasticity of
the material (E), Poisson’s ratio (v), etc.
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Step 3: Writing a programming language for triangular elements using the Fortran PowerStation 4.0
program according to the constitutive relationships and FEM modeling as shown in the following link:
http://bit.ly/2F17w8F.

Step 4: Open the Fortran PowerStation 4.0 program. An example is shown at the following link:
http://bit.ly/2MTh22j.

Step 5: Write programming language data (Step 3) in the Fortran PowerStation 4.0 program. Examples
can be seen at the following link: http://bit.ly/2ZvZWMU.

Step 6: Input DATA.DAT of BRC beam and SRC beam in the Fortran PowerStation 4.0 program. Input
data is displayed at the following links: http://bit.ly/351FPqU and http://bit.ly/2MBqas9. An example of
displaying input data is shown on the following link: http://bit.ly/2u2K2xR.

Step 7: Analyze the program until there are no warnings and errors. If there are warnings and errors,
check and correct program data and input data.

Step 8: Download stress data. The stress data are shown at the following link: http://bit.ly/2rDPeal for
the stress of BRC beam, and http://bit.ly/2Q4Ihcl for the stress of the SRC beam. An example of
displaying stress data from the Fortran PowerStation 4.0 program is shown at the following link:
http://bit.ly/2ZybLCd.

Step 9: Download displacement data. An example of displaying data displacement from the Fortran
PowerStation 4.0 program is shown on the following link: http://bit.ly/2Q7j2Wp.

Step 10: Enter stress and displacement data into the Surfer program to obtain contour image data of

2.4. Validation of Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) is a computational system for solving complex problems in
civil engineering. In this study, the validation carried out by the Artificial Neural Networks (ANN)
method is the validation of the load vs. displacements from laboratory experimental results. The
data on the loading and displacement stages of the experimental results were used as input data and
target data in this analysis. Previous researchers concluded that Artificial Neural Networks (ANN)
can be an alternative in calculating displacement in reinforced concrete beams. Several researchers
have used the ANN method for many structural engineering studies, such as predicting the
compressive strength of concrete [34], axial strength of composite columns [35], and determination
of RC building displacement [36]. Kaczmarek and Szymanska (2016) [37] concluded that the results
of calculating displacement in reinforced concrete using ANN proved to be very effective. Abd et al.
(2015) [38] concluded that the ANN method is also very good for predicting displacement in
concrete beams with a very strong correlation level of 97.27% to the test data. Tuan Ya et al. (2019)
[39] used the ANN method to predict displacement in cantilever beams and concluded that the
output was very accurate.

The ANN method is currently very popular with researchers in predicting and evaluating the
behavior of structures in the field of civil engineering. This is because the ANN method has an
advantage in the nonlinear correlation between the input variables presented. Khademi et al. (2017)
[40] predicts the compressive strength of concrete at 28 days of age by considering the experimental
results, three different models of multiple linear regression (MLR), artificial neural networks (ANN),
and adaptive neuro-fuzzy inference system (ANFIS). The results of his research concluded that the
ANN and ANFIS models can predict the 28-day concrete compressive strength more accurately and
the ANN model can perform better than the ANFIS model in terms of R2. The ANN and ANFIS
models are preferred because the nonlinear correlation between the input variables presented is better.
The ANN and ANFIS models have higher accuracy requirements than the multiple linear regression
(MLR) model. The accuracy of the prediction is very much dependent on the number of input
variables. The greater the number of input parameters, the more accurate the results of the predictor
model will be.

Xuan Li et al. (2019) [41] predict the service life of corroded concrete sewer pipes using three
data-driven models, namely multiple linear regression (MLR), artificial neural networks (ANN), and
adaptive neuro-fuzzy inference system (ANFIS). The one conclusion suggests that the ANN and
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ANFIS models perform better than the MLR models for corrosion prediction, with or without
considering the interactions between environmental factors.

The ANN data is divided into three different subsets [40], namely (1) Training: at this stage, the
subset is trained and studied as occurs in the human brain, where the number of epochs is repeated
until an acceptable model accuracy is obtained; (2) Validation: at this stage, the subset shows how well
the model is trained, and estimates model properties such as misclassification, mean error for
numerical predictors; and (3) Test: at this stage, the subset verifies the performance of the training
subset built into the ANN model.

This paper uses even load input data, while the target data is the displacement of the laboratory
test results. The distribution of the ANN model data composition consists of training 70%, validation
15%, and testing 15%. ANN architecture on a rectangular beam is shown in Figure 5. The process of
implementing input data in the ANN model architecture consists of (1) Input layer, consisting of 1
neuron, namely displacement data variable of experimental results; (2) Hidden layer, consisting of 10
neurons. At this stage, the input layer will forward the data to the hidden layer or the output layer
through a set of weights. This weight is a link from each neuron to other neurons in the next layer
which will help adjust the ANN structure to the given displacement data pattern using learning. In the
learning process, the weights will be updated continuously until one of the numbers of iterations,
errors, and processing time has been reached. This is done to adjust the ANN structure to the desired
pattern based on certain problems that will be solved using ANN. Weight is known as the
independent parameter. During the training process, the weights will be modified to improve the
accuracy of the results. The third layer is (3) Output layer, consisting of 1 neuron which is the expected
output target, error, and weight. Error is the error rate of the displacement data node of the process
carried out, while weight is the weight of the displacement data node with a value ranging between -1
and 1. Then the displacement data resulting from the training process is processed into a graphic
image of the load vs. displacement relationship.

Imput layer :>
(1 Neuron)

Hidden layer

B =@ @ O O
Output layer
i

Figure 5. Schematic of Artificial Neural Networks (ANN) model architecture for BRC beam and SRC
beam.

3. Results

3.1. Experimental

Table 5 shows the results of theoretical calculations and experiments for BRC and SRC beams.
From the theoretical calculation, the BRC beam has an initial crack load of 6.87 kN and an SRC beam
of 6.51 kN. The laboratory test results of the BRC beam experienced an initial crack at a load of 7.69
kN and an SRC beam had an initial crack at a load of 10 kN. The average ultimate load of the BRC
beam occurs at a load of 31.31 kN or 97.27% of the theoretical collapse load of 32.19 kN. This shows
that with the correct treatment of bamboo reinforcement, the BRC beam can reach load capacity
according to the results of the theoretical calculations. As is known, the researchers concluded that
the ultimate load of BRC beams is very low when compared to the theoretical calculations. Dewi et
al. (2017) [42] concluded that the bending capacity of bamboo reinforced concrete beams only
reaches 56% of its capacity if the tensile strength of bamboo is full. Nathan (2014) [43] concluded that
the flexural capacity of reinforced concrete beams only reaches 29% to 39% of the beam capacity
steel-reinforced concrete with the same width and reinforcement dimensions. Khare (2005) [44]
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concluded that the flexural capacity of reinforced concrete beams is only 35% of steel-reinforced
concrete beams at the same strength level.

SRC beams reach a collapse load of 24 kN or almost approaching the theoretical collapse load of
24.12 kN. This shows that the adhesion strength of steel-reinforcement with concrete is higher.
Figures 6 and 7 show that the relationship of the load vs. displacement of the BRC beam and the SRC
beam is different. The SRC beam shows the regions of the elastic limit, elastoplastic limit, and plastic
limit. Meanwhile, the BRC beam only shows the plastic limit point or the ultimate load point. This
shows that the behavior of reinforced concrete beams is very much determined by the properties
and characteristics of the materials used.

P =-0.1418A2 - 4.2539A + 0.5899
R?=0.9769

== BRC Beam - Exp

Load, P (kN)

Displacement, A (mm)

Figure 6. The relationship of load vs. displacement of BRC beam of experimental results.
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Figure 7. The relationship of load vs. displacement of SRC beam of experimental results.

Mechanical properties and characteristics of steel and bamboo materials are the dominant
factors in the behavior model of the load and displacement relationship [6]. The difference between
the stress and strain relationship patterns of bamboo and steel is in the position of the melting point
and the fracture stress. Steel material shows a clear melting point, while bamboo reinforcement does
not show a clear melting point. However, after the fracture stress, the relationship pattern of the
stress-strain relationship tends to return to zero. This shows that bamboo has good elastic properties

[7].

Table 5. Results of theoretical calculations and experimental for the load capacity of BRC beams and

SRC beams.
Theoret}cal Flexural Test Results
Calculations
Specime  Sample First First
ns no Ultimate Failure Displacement
Crack Crack . Per/Puit
Load Load, Pur at Failure
Load (kN) Load, (KN) (mm) (%)
(kN) Per (kN)

(a) BRC-1 1 6.90 32.20 8.50 31.50 10.92 26.98



Forests 2020, 11, x FOR PEER REVIEW 11 of 27

2 8.00 29.00 11.90 27.59

(b) 3 7.00 31.00 13.02 22.58
BRC-2 4 7.50 33.00 12.18 22.73
() BRC:3 5 8.00 33.50 14.69 23.88
6 7.50 33.00 9.32 22.73

(d) 7 7.50 29.50 7.61 25.42
BRC-4 8 7.50 30.00 10.69 25.00
Average: 7.69 31.31 24.61

(e) SRC 9 6.50 24.20 10.00 24.00 6.33 41.57

3.2. Validation with the ANN Method

The load vs. displacement relationship data from the experimental results is the basis used for
the train and the network. Neural networks are designed by determining their structure
experimentally. The data that trains the artificial neural network is the input, and the ability to
reproduce the training pattern is tested. Convergence analysis was carried out to determine the
optimal number of neurons in the hidden layer of ANN. Excessive neurons reduce the
computational performance of ANN, whereas a lack of neurons causes difficulties in characterizing
the input-output relationship. As suggested by Caudill and Mishra et al. (2019) [45], the upper limit
of the number of neurons in the hidden layer is twice the number of inputs plus 1. After the number
of neurons in the hidden layer is reached, the MSE, RMSE, and R? observations are stopped and no
increase is assumed significant. The artificial neural network architecture used in this paper: THO:
1-10-1 [Input-Hidden-Output] means that this artificial neural network consists of 1 input neuron,
one hidden layer with 10 neurons, and 1 output neuron (predictive values of the load vs.
displacement relationship).

Table 6 presents the performance results of ANN architecture for ten simulations. The process
which has the lowest MSE is selected for comparison with experimental data. Figures 8-12 illustrate
the prediction of the load vs. displacement of the BRC and SRC beams obtained when using the
ANN model after training and when using the data obtained experimentally for training data,
validation data, test data, and all data. Figures 8-12 shows the correlation between the value of the
BRC beam and the SRC beam relationship obtained in the laboratory and the load vs. displacement
values obtained using ANN analysis. The convergence of the position of the point with the line y = x
indicates the identification of values with very high accuracy. The correlation value of laboratory
data using ANN shows an average value of R Square of 0.999. This indicates that the two results are
consistent. The prediction results of the ANN method show that the percentage of errors is very
small, with a maximum error of 0.26%. Overall, the comparison of experimental data with the
predicted results of the ANN method shows an error of not more than 1%. From the data from the
two analyses and the load vs. displacement relationship pattern, it can be concluded that the
stiffness of the BRC beam has similarities.

Table 6. The validation results of the relationship load vs. displacement using the ANN method.

Specimens The Correlation Coefficient (R) Mean Square Error (MSE)
Training Validation Testing Training Validation Testing
BRC-1 1.0000 0.9999 0.9997 0.0004 0.0011 0.0110
BRC-2 0.9999 0.9997 0.9999 0.0038 0.0276 0.0048
BRC-3 0.9998 0.9999 0.9993 0.0034 0.0075 0.0152
BRC-4 1.0000 1.0000 1.0000 0.0001 0.0009 0.0010

SRC 1.0000 1.0000 0.9997 0.0001 0.0027 0.0006
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Figure 8. Prediction of the load vs. displacement relationship using ANN and using experimental

observation for the training, validation, testing, and all datasets (BRC-1).
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Figure 11. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (BRC-4).
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Figure 12. Prediction of the load vs. displacement relationship using ANN and using experimental
observation for the training, validation, testing, and all datasets (SRC).

The data merger of ANN analysis results from each BRC beam specimen into a load vs.
displacement relationship. The merger is done to determine the suitability of the load vs.
displacement relationship model through the R? parameter. From the results of the regression
analysis, it is found that R? = 0.9771, or almost close to 1. This shows that the model has high
suitability, as shown in Figure 13. Figure 13 illustrates the load vs. displacement relationship for all
BRC beam typologies from ANN analysis.
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Figure 13. The relationship of load vs. displacement of BRC beam of ANN results.

3.3. Validation with the Finite Element Method

Validation of the relationship of load vs. displacement with the finite element method is done
by inputting the geometry of the cross-section, load data, modulus of elasticity (E) per layer, and
Poisson’s ratio (v). The load vs. displacement relationship diagram of the experimental results as
shown in Figures 6 and 7 is used as a guide for the stages of the analysis process using the finite
element method. And the cross-sectional stiffness input via the per-layer modulus of elasticity (E) is
shown in Tables 7 and 8. The analysis execution using the finite element method uses the Fortran
PowerStation 4.0 program. The process of calculating displacement and stress with the Fortran
PowerStation 4.0 program is carried out in stages according to the loading and stiffness stages per
layer from the beam’s elastic condition, initial crack, elastoplastic, and plastic conditions until the
beam collapses. The displacement data resulting from the finite element method is processed into a
load vs. displacement relationship as shown in Figure 14. h"he displacement of the load ultimate is
shown in Figure 15 for BRC beams and Figure 16 for SRC beams‘. The stress contours at the time of
the load collapse are shown in Figure 17 for BRC beams and Figure 18 for SRC beams.

2

15 ——— BRCBeam - FEM
~———— SRCBeam - FEM

Load, P (kN)

10 4 -4~

0 2 4 6 8 0 12 4 6
Displacement, A (mm)

Figure 14. The relationship of load vs. displacement of BRC beam of finite element method (FEM)
results.

Comment [CH14]: Please replace
with "The displacement contours
when the ultimate load are shown in
Figure 15 for BRC beams and
Figure 16 for SRC beams”.
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Table 7. The modulus of elasticity for each layer of the BRC beam in the non-linear phase.

17 of 27

Modulus of Elasticity (E) of the BRC Beam

N]:::Zl:)rer Elastic Condition Plastic Conditions with Gradual Loads
0-8.5 kN 9 kN 11 kN 13 kN 15 kN 17 kN 19 kN 21 kN 23 kN 25 kN 27 kN 29 kN 31 kN 33 kN
4ﬂl1a;neiSh 26851.29 16,110.77 16,110.77  16,110.77 16,110.77 16,110.77  16,110.77 16,110.77 16,110.77 16,110.77  12,083.08 11,277.54  11,277.54  8592.41
St?ar}liSh 26851.29 16,110.77 16,110.77 16,110.77  16,110.77 16,110.77 16,110.77  16,110.77 16,110.77 1208.31 10,740.52 9397.95 9397.95 7518.36
2“;; rreliSh 23140.89 13,884.53 11,570.44 11,570.44 11,570.44 11,570.44 10,413.40 10,413.40 10,413.40 10,413.40 6942.27 6942.27 6942.27 5553.81
y
Ist mesh 26851.29 13,425.65 11,814.57  10,203.49 8323.90 6712.82 5101.75 5101.75 5101.75 3759.18 3222.16 2685.13 1611.08 1329.14

layer
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Table 8. The modulus of elasticity for each layer of the SRC beam in the non-linear phase.
Modulus of Elasticity (E) of the SRC Beam
Layer Number Elastic Condition Plastic Conditions with Gradual Loads
0-9 kN 10 kN 11 kN 12 kN 13 kN 15 kN 17 kN 19 KN 21 KN 23 kN 24 kN
4th mesh layer 26,851.29 26,851.29 20,13847 20,138.47 20,138.47 20,138.47 20,138.47 18,79590 18,79590 13,425.65 11,411.80
3th mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 18,79590 18,79590 18,795.90 17,453.34 17,453.34 13,425.65 11,411.80
2nd mesh layer 43,209.32 43,209.32 30,586.93 30,586.93 28,547.80 28,547.80 26,508.67 26,508.67 24,469.54 20,391,29 17,332.60
1st mesh layer 26,851.29 26,851.29 20,138.47 20,138.47 18,795.90 18,795.90 17,453.34 16,110.77 14,768.21 13,425.65 12,083.08
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4. Discussion

Merging is carried out on the load vs. displacement relationship diagram from the experimental
results, ANN analysis, and finite element method (FEM) analysis. Figure 19 shows the combined
load vs. displacement diagram of the ANN analysis results with the experimental results. Figure 19
shows that the load vs. displacement relationship diagram the two analyses results are very
coincided or show high suitability. However, at a load of approximately 90% of the collapse load, the
load vs. displacement relationship diagram shows different behavior. Figure 20 shows the combined
load vs. displacement diagram of the experimental results, ANN analysis, and the results of the
finite element method analysis. Figure 19 shows that the artificial neural networks (ANN) model has
a higher R? value when compared to the R? value of the multiple linear regression model (MLR).
ANN analysis has better predictive accuracy. This is the same as the conclusion of 2 researchers,
namely Khademi et al. (2017) [40], who concluded that the ANN model has higher accuracy than the
multiple linear regression (MLR) model, and Xuan Li et al. (2019) [41], who concluded that the ANN
model performs better than the MLR models with or without considering the interactions between
factors. The accuracy of the prediction is very much dependent on the number of input variables.
The greater the number of input parameters, the more accurate the results of the predicted model.

The diagram of the relationship between load and displacement of the BRC beam from FEM
analysis and experimental results shows the difference in elastic conditions or until the initial crack
occurs. The experimental results showed negative differences with the results of the FEM analysis.
This shows the influence of the nature and characteristics of bamboo. The parts of bamboo stems
have a non-uniform or uncertain modulus of elasticity. Tensile strength and modulus of elasticity of
bamboo tested in the laboratory are sometimes different from bamboo which is used as beam
reinforcement. As is known, bamboo trees from base to tip have different tensile strength and fiber
density. tMeanwhile, the load vs. displacement diagram of the SRC beam experiment results has a
positive difference with the results of the FEM analysis when the elastic condition occurs or until the
initial crack occurs]. Positive differences can be ignored, in the sense that the quality of the steel used
is better than the quality of steel tested in the laboratory. However, in this study, the analysis of
stiffness reduction in BRC and SRC beams was focused after the beam experienced an initial crack or
non-linear phase.

35 1+ R?=0.9769 (Exp - BRC)

Plastic limit
30 T
R’
25 +

2 = 0.9771 (ANN - BRC)

Load (kN)

15 1+ Elastoplastic limit

Exp - BRC Beam
s Exp - SRC Beam

Elastic limit ANN - BRC Beam

0 -2 -4 -6 -8 -10 -12 -14 -16
Displacement, A (mm)

Figure 19. The combined of the load vs. displacement relationship of BRC beam of the experimental
results and ANN analysis.

Comment [CH15]: Please replace
with "Meanwhile, the relationship
diagram of load vs. displacement of
the SRC beam experiment results is
positively different from the results
of the FEM analysis when the elastic
condition or until the initial crack

occurs”.
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Figure 20. The combined of the load vs. displacement relationship of BRC beam and SRC beam of the
experimental results, ANN analysis, and FEM.

Figure 20 shows that inelastic conditions there is a difference in stiffness between the two types
of beams. The stiffness of bamboo reinforced concrete beams (BRC) is lower than the stiffness of
steel-reinforced concrete beams (SRC). This difference occurs not due to reduced cross-section
inertia or I of cross-sectional reduction, but due to the nature of the material used. This is because
the BRC beam uses bamboo reinforcing material, which has high elastic and resilience properties.
BRC beams with bamboo reinforcement will be able to accept high impact loads without causing
over stress at the elastic limit, even though displacement has occurred. This indicates that the energy
absorbed during loading is stored and released if the material is not loaded. Meanwhile, the SRC
beam uses steel material that has high stiffness and toughness, so that the SRC beam in the service
load range or elastic conditions does not experience excessive displacement or deformation. Beams
that use materials with high stiffness and toughness will be able to withstand high impact loads or
shock loads. If the SRC beam gets an impact load, then some of the energy is absorbed and some of
the energy is transferred.

In the non-linear phase or after initial cracking, the beam stiffness changes from the
full-sectional flexural stiffness, Eclg, to the effective bending stiffness, Ecls. In the non-linear phase,
the stiffness of the beam section continues to decrease with increasing loads, moments, and cracks.
The area of the beam section continues to decrease with increasing cracks and automatically causes
the beam section stiffness (Eclg) to decrease. As shown in Table 6 and Figure 21, the stiffness of the
BRC beam decreases after the initial cracking occurs as the increasing loading stage is applied. The
increase in load causes the flexural moment to increase, the displacement increases, and the crack
propagation continues to spread towards the compressed block of the beam cross-section. The crack
propagation from 1st mesh layer to the 2nd mesh layer onwards runs linearly with reduced
cross-sectional stiffness from the lower fiber of the cross-section tensile block to the upper fiber of the
compressive block of the beam cross-section. The increase in crack propagation towards the
compressive block of cross-section causes the neutral line to change. Chunyu Fu et al. (2018) [13]
concluded that the presence of cracks causes a nonlinear stress distribution along the beam
cross-section, which changes the neutral axis of the cross-section and further affects the stiffness of
the beam. Figure 21 shows that the stiffness of the BRC beam cross-section decreases from the initial
crack until the beam collapses. The stiffness of BRC beams is reduced by 50% after initial cracking to
95% at collapse. The stiffness reduction goes step by step according to the moment (M) applied to
the beam. Sang-Whan Han et al. (2009) [4] revealed that the stiffness reduction factor was
significantly affected by the amount of moment or the applied load, while the stiffness reduction
factor did not differ from the amount of reinforcement. The decrease in the moment of inertia of the
full cross-sectional Ig of the BRC beam ranged from 0.51;-0.05I; for the elastoplastic and plastic
regions. Meanwhile, ACI-318M-14 [5] recommends the stiffness of the beam cross-section for elastic
analysis in the non-linear phase of 0.51;-0.25I;. The difference in the value of the reduction in the
stiffness of the cross-section at collapse correlates with the differences in the properties and
characteristics of the material used as beam reinforcement. Bamboo reinforced concrete beams (BRC)
exhibit high displacement behavior, but once the collapse load is reached and gradually released,
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displacement tends to return to zero. It is linear with its elastic properties and the stress vs. strain
relationship behavior of bamboo.
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Figure 21. Decreased stiffness of BRC beam cross-section in the span middle.

Table 7 and Figure 22 show a decrease in stiffness or a decrease in the moment of inertia of the
SRC beam cross-section. Stiffness decreases after initial cracking as the applied load increases.
Figure 22 shows that the cross-sectional stiffness of the SRC beam decreases from the initial crack
until the beam collapses. The stiffness of the SRC beam was reduced by 25% after initial cracking to
60% at collapse. The decrease in the moment of inertia full cross-section () for SRC beams ranged
from 0.751,-0.40I for the elastoplastic and plastic regions. Meanwhile, ACI-318M-14 [5] recommends
the cross-sectional stiffness of reinforced concrete beams for elastic analysis in the non-linear phase
of 0.51;-0.25I;. The difference in the value of the reduction in the cross-sectional stiffness of the SRC
beam with the ACI-318M-14 [5] requirements is due to the beam cross-section reinforcement
method, namely the SRC beam in this study using a single reinforcement method. SRC beam with
single reinforcement shows that when the steel reinforcement undergoes second melting and the
moment of inertia of the cross-section is still around 40%, the steel reinforcement is not able to
withstand the tensile stress that occurs so that the neutral line of the cross-section continues to shift
upwards towards the upper fiber of the compression block of the cross-section. Meanwhile, BRC
beams with bamboo reinforcement have good elastic properties, where after the ultimate load is
reached, the large displacement shrinks back to near-zero or the beam returns flat [7], as shown in
the video at the following link: https://g0o.gl/6AVWmP. Although the stiffness or inertia of the BRC
beam cross-section is still around 5%, bamboo reinforcement is still able to withstand the tensile
stress that occurs, as stated by Ghavami (2005) [24] that bamboo has high tensile strength. If we
control with the crack pattern, the crack lines on the BRC beam majority stop below the cross-section
neutral line, while the crack lines on the SRC beam tend to continue to propagate upwards towards
the upper fibers of the compressive block of the beam cross-section, as shown in Figures 23 and 24.
And if we look at Figures 17 and 18, the tensile stress contour of the BRC beam has a wider zone and
spreads to the side when compared to the SRC beam.
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Figures 25 and 26 show the relationship between the stiffness reduction factor (¢x) and the
M:/Mer of the BRC beam and the SRC beam. The stiffness reduction factor (¢x) is the ratio of the
moment of inertia of the effective section (I) divided by the moment of inertia of the cross-section
(Is). The stiffness reduction factor (¢x) is significantly influenced by the applied moment level. The
equation of the beam stiffness reduction factor is related to the ratio between the applied moment
and an initial crack moment or M«/Me. The equation for the stiffness reduction factor is shown in
Equation (5) or Equation (6) for a BRC beam. The stiffness reduction factor equation for the SRC
beam is shown in Equation (7) or Equation (8). Figure 27 shows a comparison of the relationship
between the stiffness reduction factor and the Mas/M.rof the BRC beam and SRC beam. The diagram
of the relationship between the stiffness reduction factor and M«/Mcshows that the SRC beam has a
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smaller stiffness reduction factor than the BRC beam in the non-linear phase. However, the SRC
beam shows a collapse at the moment of inertia of the effective cross-section (I.), which is relatively
still large when compared to BRC beams. BRC beams collapse at the effective cross-section inertia of
about 5%, and SRC beams collapse at the effective section inertia of about 40%. The alternative of
moments of inertia from various sources is shown in Table 9.
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Figure 25. The relationship of the stiffness reduction factor (¢«x) and the Mo/M.r of the BRC beam.
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Figure 26. The relationship of the stiffness reduction factor (¢«) and the Mo/M.r of the SRC beam.
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Figure 27. Comparison of the relationship of the stiffness reduction factor (¢«) and the Ms/Mer of the
BRC beam and SRC beam.

Table 9. The alternative value of I for elastic analysis from various sources.

Source and Information Alternative value of I for elastic analysis
ACI-318M-14 [5] 0.251-0.51¢
FEMA 356-2000 [46] 0.5 EI-0.8EIy
New Zealand Code [47] 0.35I;
Paulay and Priestley, 1992 [48] 0.30I,-0.501¢
In this research (singly reinforced beam)
- BRC Beam 0.05I-0.51;
- SRC Beam 0.41.-0.751¢

5. Conclusions

The relationship pattern of load vs. displacement reflects the stiffness pattern of structural
elements. The properties and characteristics of the material in the reinforcing concrete elements have
a dominant influence on the relationship pattern of the load vs. displacement of reinforced concrete
elements. Bamboo reinforced concrete beams (BRC) have a different load vs. displacement
relationship pattern when compared to steel reinforced concrete beams (SRC). BRC beams have
elastic properties and high resilience properties that can accept high impact loads without causing
over stress at the elastic limit, even though displacement has occurred. While SRC beams have high
stiffness and toughness so that SRC beams are not subject to excessive displacement or deformation
at service load ranges or elastic conditions.

Results of the validation of the relationship pattern of the load vs. displacement of the BRC
beams shows that the ANN model has a higher R? value when compared to the R? value of the MLR
model. ANN analysis has a higher prediction accuracy. The accuracy of the prediction depends very
much on the number of input variables. The greater the number of input parameters, the more
accurate the prediction model results.

The cross-sectional stiffness of BRC beams is reduced by 50% after initial cracking and reduced
by 95% at collapse. The cross-sectional stiffness of the SRC beam was reduced by 25% after initial
cracking and reduced by 60% at collapse. The reduction in stiffness is significantly affected by the
amount of applied moment (M.) or the load applied that caused cracks and a reduction in the
moment of inertia of the cross-section.

The initial decrease in cross-sectional stiffness of BRC beams occurs at a load of about 24% of
the ultimate load and BRC beams occur at loads of about 40% ultimate load. BRC beam collapse
occurs when the moment of inertia of the effective cross-section (I) is 5%, while the SRC beam
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collapse occurs when the moment of inertia of the effective cross-section () is 40%. The reduction in
stiffness in the cross-section of the beam in the non-linear phase ranged from 0.5[;-0.05I; for BRC
beams, and 0.751;-0.40I; for SRC beams. ACI-318M-14 standard recommends the cross-sectional
stiffness of reinforced concrete beams for elastic analysis in the non-linear phase of 0.5;-0.25I;.

The SRC beams have a smaller stiffness reduction factor (¢x) than BRC beams in the non-linear
phase. However, the SRC beam shows a collapse at the moment of inertia of the effective
cross-section (L), which is relatively large when compared to BRC beams.
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