Tyas, Salsabila Mazya Permataning (2021) PENGARUH EKSTRAKSI FITUR TERHADAP ANALISIS SENTIMENT PADA DATA REVIEW PELAYANAN INDIHOME BERBASIS NAÏVE BAYES. Undergraduate thesis, Universitas Muhammadiyah Jember.
Text
a. Pendahuluan.pdf Download (1MB) |
|
Text
b. Abstrak.pdf Download (248kB) |
|
Text
c. Bab I.pdf Download (647kB) |
|
Text
d. Bab II.pdf Restricted to Repository staff only Download (858kB) | Request a copy |
|
Text
e. Bab III.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
|
Text
f. Bab IV.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
|
Text
g. Bab V.pdf Restricted to Repository staff only Download (639kB) | Request a copy |
|
Text
h. Daftar Pustaka.pdf Download (747kB) |
|
Text
i. Lampiran.pdf Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Along with the progress of the times, the mass media used to seek information by the public is also progressing rapidly, especially in internet technology. One part of internet technology that is widely used by the community is the use of social media, for example the social media twitter. Twitter social media can be used to convey a user's feelings or opinions aimed at the general public. In this study, sentiment analysis was carried out regarding public responses or reviews about IndiHome services on Twitter social media. This study uses a comparison of TF-IDF and Word2Vec feature extraction, and the classification method used is the nave Bayes classifier. The accuracy results obtained in this study were 96% using the Tf-Idf feature extraction and testing was carried out using an unseen data test that was selected randomly resulting in an accuracy of 92%. While the accuracy value obtained by using the Word2Vec feature extraction is 60% by testing using unseen test data selected randomly resulting in an accuracy value of 44%.
Item Type: | Thesis (Undergraduate) | ||||||
---|---|---|---|---|---|---|---|
Uncontrolled Keywords: | Sentiment Analysis, IndiHome, TF-IDF, Word2Vec, Naive bayes, Twitter. | ||||||
Subjects: | 000 Computer Science, Information, & General Works > 004 Data Processing, Computer Science | ||||||
Divisions: | Faculty of Engineering > Department of Informatics Engineering (S1) | ||||||
Department: | S1 Teknik Informatika | ||||||
Depositing User: | Salsabila Mazya Permataning Tyas | ||||||
Contributors: |
|
||||||
Contact Email Address: | salsa25mazya@gmail.com | ||||||
Date Deposited: | 14 Feb 2022 04:06 | ||||||
Last Modified: | 14 Feb 2022 04:06 | ||||||
URI: | http://repository.unmuhjember.ac.id/id/eprint/12891 |
Actions (login required)
View Item |