Optimasi Metode Kmeans Dengan Algoritma Artificial Bee Colony Untuk Pengelompokkan Penyebaran Covid-19 Pada Provinsi Di Indonesia


LESTARI, INTAN DIAN PUJI (2022) Optimasi Metode Kmeans Dengan Algoritma Artificial Bee Colony Untuk Pengelompokkan Penyebaran Covid-19 Pada Provinsi Di Indonesia. Undergraduate thesis, Universitas Muhammadiyah Jember.

Text
1. Pendahuluan.pdf

Download (1MB)
Text
2. Abstrak.pdf

Download (529kB)
Text
3. Bab I.pdf

Download (653kB)
Text
4. Bab II.pdf
Restricted to Registered users only

Download (848kB)
Text
5. Bab III.pdf
Restricted to Registered users only

Download (1MB)
Text
6. Bab IV.pdf
Restricted to Registered users only

Download (1MB)
Text
7. Bab V.pdf
Restricted to Registered users only

Download (525kB)
Text
8. Daftar Pustaka.pdf

Download (643kB)
Text
9. Lampiran.pdf
Restricted to Registered users only

Download (6MB)

Abstract

Metode ABCKM merupakan gabungan clustering K-means dengan optimasi
Artificial Bee Colony. Dengan memadukan K-means dan metode Artificial Bee
Colony maka diharapkan dapat meningkatkan kemampuan KM dalam menentukan
titik pusat data dan kemudian menemukan cluster pada area global yang optimal,
dalam pencarian titik pusak nilai cluster terendah mengunakan metode Davies
Bouldin Index dengan uji coba 2 sampai 10 cluster. Dataset yang digunakan yaitu
dataset persebaran kasus covid-19 yang terjadi pada provinsi di Indonesia pada bulan
April tahun 2020 sampai bulan Agustus 2020. Hasil yang didapat pada optimasi
Artificial Bee Colony KM dalam menentukan cluster terendah terjadi pada 10 cluster
dengan nilai davies bouldin index sebasar 2.0218.

Dosen Pembimbing: Arifianto, Deni and Oktavianto, Hardian | NIDN0718068103, NIDN0722108105
Item Type: Thesis (Undergraduate)
Keywords/Kata Kunci: Covid19/Coronavirus, Clustering, Kmeans, Artificial Bee Colony, Davies Bouldin Index(DBI)
Subjects: 000 Computer Science, Information, & General Works > 004 Data Processing, Computer Science
Divisions: Faculty of Engineering > Department of Informatics Engineering (S1)
Depositing User: Intan Dian Puji Lestari | intandianpujilestari2@gmail.com
Date Deposited: 01 Aug 2022 03:23
Last Modified: 01 Aug 2022 03:26
URI: https://repository.unmuhjember.ac.id/id/eprint/14655

Actions (login required)

View Item
View Item