KLASIFIKASI DOKUMEN BERKATEGORI MENGGUNAKAN ALGOTIRMA NAIVE BAYES BERBASIS BERNOULLI

AYU SUSANTI, MELISA (2016) KLASIFIKASI DOKUMEN BERKATEGORI MENGGUNAKAN ALGOTIRMA NAIVE BAYES BERBASIS BERNOULLI. Undergraduate thesis, universitas muhammdiyah jember.

[img] Text
COVER.pdf

Download (140kB)
[img] Text
ABSTRAK.pdf

Download (94kB)
[img] Text
BAB I.pdf

Download (207kB)
[img] Text
BAB II.pdf
Restricted to Repository staff only

Download (548kB)
[img] Text
BAB III.pdf
Restricted to Repository staff only

Download (542kB)
[img] Text
BAB IV.pdf
Restricted to Repository staff only

Download (315kB)
[img] Text
BAB V.pdf
Restricted to Repository staff only

Download (7kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (195kB)
[img] Text
Artikel.pdf

Download (218kB)

Abstract

Dalam mengelola informasi dari sekumpulan dokumen dengan jumlah yang besar merupakan sebuah kesulitan untuk mengidentifikasi kata yang ada pada dokumen tersebut menurut masing-masing kategori dari dokumen tersebut diperlukan suatu metode. Naive Bayes Classifier merupakan salah satu metode machine learning yang menggunakan perhitungan probabilitas. Klasifikasi teks menggunakan Naive bayes ini ada salah satu model yang dapat membantu kita mengelompokkan dokumen yaitu Bernoulli NB. Penelitian ini berusaha untuk mengklasifikasi kategori dokumen dengan menggunakan algoritma Naive Bayes Berbasis Bernoulli. Klasifikasi ini ditekankan pada kategori dokumen diantaranya Ekonomi, Kesehatan, Hiburan dan Teknologi, untuk mengetahui nilai akurasi yang akan diukur menggunakan pembobotan proses Algoritma Naive Bayes Classifier. Metode Bernoulli NB merupakan metode yang digunakan untuk klasifikasi sebuah teks dari kategori dokumen. Hasil pengujian klasifikasi dokumen kategori dengan menggunakan metode Naive Bayes Berbasis Bernoulli dapat mengklasifikasikan dokumen kategori dengan tingkat Presicion sebesar 70%, Accuracy 65% dan Recall 70% dari nilai rata-rata keseluruhan dokumen percobaan dengan tingkat nilai berbeda. Hal ini menunjukkan bahwa metode Naive Bayes berbasis Bernoulli tingkat klasifikasi dalam mengelompokkan suatu dokumen belum optimal.

Item Type: Thesis (Undergraduate)
Subjects: 000 General Works > 004 Data Processing, Computer Science
Divisions: Faculty of Engineering > Department of Informatics Engineering (S1 - Undergraduate Thesis)
Depositing User: Hendri Uut Fahrullah
Date Deposited: 22 Jun 2020 03:25
Last Modified: 22 Jun 2020 03:25
URI: http://repository.unmuhjember.ac.id/id/eprint/4073

Actions (login required)

View Item View Item