Penerapan Teknik Vote Menggunakan C4.5 Naive Bayes dan K_nearest Neighbor Pada Data Gangguan Autisme

Pratama, Mohamad Arifandi (2022) Penerapan Teknik Vote Menggunakan C4.5 Naive Bayes dan K_nearest Neighbor Pada Data Gangguan Autisme. Undergraduate thesis, Universitas Muhammadiyah Jember.

[img] Text
1. Pendahuluan.pdf

Download (1MB)
[img] Text
2. Abstrak.pdf

Download (760kB)
[img] Text
3. BAB I.pdf

Download (779kB)
[img] Text
4. BAB II.pdf
Restricted to Repository staff only

Download (829kB) | Request a copy
[img] Text
5. BAB III.pdf
Restricted to Repository staff only

Download (987kB) | Request a copy
[img] Text
6. BAB IV.pdf
Restricted to Repository staff only

Download (938kB) | Request a copy
[img] Text
7. BAB V.pdf
Restricted to Repository staff only

Download (759kB) | Request a copy
[img] Text
8. Daftar Pustaka.pdf

Download (763kB)
[img] Text
9. Lampiran.pdf
Restricted to Repository staff only

Download (1MB) | Request a copy
[img] Text
10. Artikel.pdf

Download (1MB)

Abstract

Autisme merupakan gangguan pada perkembangan otak yang memengaruhi kemampuan penderita dalam berkomunikasi dan berinteraksi dengan orang lain. Di samping itu, autisme juga menyebabkan gangguan perilaku dan membatasi minat penderitanya. Dikarenakan untuk mengidentifikasi autisme dibutuhkan dokter spesialis yang jumlahnya tidak terlalu banyak dan waktu yang cenderung lama, dengan mengklasifikasikan gejala-gejala penderita gangguan autisme maka akan semakin cepat untuk untuk mengetahui gangguan yang dialami. Pada penelitian yang dilakukan oleh (Zhang, dkk, 2014) pada data Breast-cancer dengan algoritma C4.5 didapatkan akurasi 75,5%. Penelitian pada dataset gangguan autisme pada anak pernah dilalukan oleh (Sugara, dkk., 2018) pada penelitiannya yang menggunakan algorima C4.5 didapatkan akurasi sebesar 72%. Berdasarkan latar belakang tersebut penelitian dilakukan untuk meningkatkat akurasi pada data gangguan autisme. Untuk itu akan digunakan teknik voting pada algoritma C4.5, atribut yang digunakan yaitu GJ01 hingga GJ24. Metode yang akan digunakan pada vote yaitu C4.5, K-nearest Neighbor dan naive bayes. Ensemble method merupakan teknik untuk meningkatkan akurasi. Salah satu contoh dari ensemble method adalah voting atau bisa disebut majority vote. lalu digunakan ensemble method majority vote didapatkan akurasi 88,89%, dimana akurasi tersebut mendapatkan peningkatan akurasi sebesar 13,39% .

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Kata Kunci : Gangguan Autisme, Algoritma C4.5, vote, K-nearest neighbor, Naive bayes
Subjects: 000 Computer Science, Information, & General Works > 005 Computer Programming, Programs, & Data
Divisions: Faculty of Engineering > Department of Informatics Engineering (S1)
Department: S1 Teknik Informatika
Depositing User: Mohamad Arifandi Pratama
Contributors:
ContributionContributor NameNIDN/NIDK
Thesis advisorNilogiri, Agungnidn0030037701
Thesis advisorFaruq, Habibatul Azizah Alnidn0718128901
Contact Email Address: arifandy0805@gmail.com
Date Deposited: 04 Feb 2022 06:23
Last Modified: 04 Feb 2022 06:23
URI: http://repository.unmuhjember.ac.id/id/eprint/12734

Actions (login required)

View Item View Item