PANGESTU, DWI SAKA (2023) KLASIFIKASI KATEGORI PERTANDINGAN ATLET SILAT PERISAI DIRI MENGGUNAKAN METODE GAUSSIAN NAIVE BAYES BERBASIS WEB. Undergraduate thesis, UNIVERSITAS MUHAMMADIYAH JEMBER.
Text
1. PENDAHULUAN.pdf Download (776kB) |
|
Text
2. ABSTRAK.pdf Download (384kB) |
|
Text
3. BAB I.pdf Download (388kB) |
|
Text
4. BAB II.pdf Restricted to Repository staff only Download (634kB) | Request a copy |
|
Text
5. BAB III.pdf Restricted to Repository staff only Download (501kB) | Request a copy |
|
Text
6. BAB IV.pdf Restricted to Repository staff only Download (608kB) | Request a copy |
|
Text
7. BAB V.pdf Restricted to Repository staff only Download (376kB) | Request a copy |
|
Text
8. DAFTAR PUSTAKA.pdf Download (451kB) |
|
Text
9. LAMPIRAN.pdf Restricted to Repository staff only Download (513kB) | Request a copy |
Abstract
Perisai Diri merupakan salah satu dari pencak silat yang ada di Indonesia dan aktif mengadakan kejuaraan internal atau kejuaraan antar unit/ranting Perisai Diri itu sendiri. Pertandingan internal Perisai Diri memiliki tiga kategori yaitu Tanding (Fight), TGR (Tunggal, Ganda, Regu)/Seni, dan Serang Hindar, dimana dari kategori pertandingan tersebut memiliki karakteristik dan kebutuhan pertandingan yang berbeda. Perisai Diri Jember masih belum memiliki sistem untuk membantu memilih atlet, selama ini pemilihan kategori untuk atlet dilakuakan secara manual. Tujuan dari penelitian ini yaitu untuk mengetahui tingkat akurasi, presisi, dan recall dalam klasifikasi atlet Perisai Diri dengan menggunakan 64 data. Metode klasifikasi yang digunakan pada penelitian kali ini yaitu Gaussian Naïve Bayes dan menggunakan metode pendukung K-Fold Cross Validation. Hasil dari penelitian ini didapatkan akurasi sebesar 80%, dengan recall 100% dan presisi sebesar 66,67%.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Uncontrolled Keywords: | klasifikasi atlet, Gaussian Naïve Bayes, Pencak Silat | |||||||||
Subjects: | 000 Computer Science, Information, & General Works 000 Computer Science, Information, & General Works > 005 Computer Programming, Programs, & Data |
|||||||||
Divisions: | Faculty of Engineering > Department of Informatics Engineering (S1) | |||||||||
Department: | S1 Teknik Informatika | |||||||||
Depositing User: | Dwi Saka Pangestu | |||||||||
Contributors: |
|
|||||||||
Contact Email Address: | sakaestu@gmail.com | |||||||||
Date Deposited: | 01 Feb 2023 06:26 | |||||||||
Last Modified: | 01 Feb 2023 06:26 | |||||||||
URI: | http://repository.unmuhjember.ac.id/id/eprint/16261 |
Actions (login required)
View Item |