Safitri, Ida (2021) ALGORITMA PARTITIONING AROUND MEDOIDS (PAM) UNTUK MENGELOMPOKKAN PROVINSI DI INDONESIA BERDASARKAN LUAS PANEN, PRODUKTIVITAS DAN PRODUKSI PADI. Undergraduate thesis, Universias Muhammadiyah Jember.
Text
a. PENDAHULUAN.pdf Download (2MB) |
|
Text
b. ABSTRAK.pdf Download (257kB) |
|
Text
c. BAB I.pdf Download (563kB) |
|
Text
d. BAB II.pdf Restricted to Repository staff only Download (918kB) | Request a copy |
|
Text
g. BAB V.pdf Restricted to Repository staff only Download (176kB) | Request a copy |
|
Text
e. BAB III.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
|
Text
f. BAB IV.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
|
Text
h. DAFTAR PUSTAKA.pdf Download (327kB) |
|
Text
j. ARTIKEL.pdf Download (371kB) |
|
Text
i. LAMPIRAN.pdf Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Indonesia adalah salah satu negara yang memproduksi beras terbanyak di dunia, Namun Indonesia juga masih merupakan negara pengimport beras yang memiliki konsumsi beras perkapita sekitar 140 kilogram beras per tahun. Dalam rangka memenuhi kebutuhan beras, Dinas Pertanian berupaya untuk terus mengoptimalkan hasil pertanian padi. Dalam hal ini diperlukan suatu metode pengelompokkan data terhadap hasil panen berdasarkan Luas Panen Produktivitas dan Produksi panen tiap Provinsi, salah satu algoritma clustering yang dapat digunakan adalah Partitioning Around Medoids (PAM). Data yang digunakan yaitu data Luas panen Produktivitas dan Produksi padi tahun 2019 di 34 Provinsi di Indonesia. Dari serangkaian pengujian dimulai dari 2 cluster hingga 10 cluster, dihasilkan cluster optimum yang berada pada 3 cluster berdasarkan nilai terendah yang dihitung dengan metode Davies Bouldin Index. Cluster 1 terdiri dari 29 provinsi, cluster 2 terdiri dari 2 provinsi, dan cluster 3 yang terdiri 3 provinsi. Berdasarkan hasil karakteristik tiga data tersebut didapatkan Luas panen Produktivitas dan Produksi pada cluster 1 memiliki komposisi lebih rendah dibandingkan dengan Luas panen Produktivitas dan Produksi pada cluster 2 dan cluster 3. Sedangkan Luas Panen Produktivitas dan Produksi pada cluster 3 memiliki komposisi lebih tinggi dibandingkan Luas panen Produktivitas dan Produksi pada cluster 1 dan cluster 2.
Item Type: | Thesis (Undergraduate) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Uncontrolled Keywords: | Luas Panen Produktivitas dan Produksi , Clustering, Partitioning Around Medoids, Davies Bouldin Index. | |||||||||
Subjects: | 000 Computer Science, Information, & General Works | |||||||||
Divisions: | Faculty of Engineering > Department of Informatics Engineering (S1) | |||||||||
Department: | S1 Teknik Informatika | |||||||||
Depositing User: | Safitri Ida | |||||||||
Contributors: |
|
|||||||||
Contact Email Address: | idasafitri860@gmail.com | |||||||||
Date Deposited: | 31 Mar 2021 01:55 | |||||||||
Last Modified: | 31 Mar 2021 01:59 | |||||||||
URI: | http://repository.unmuhjember.ac.id/id/eprint/9325 |
Actions (login required)
View Item |